Article

ATP binding to nucleotide binding domain (NBD)1 of the ClpB chaperone induces motion of the long coiled-coil, stabilizes the hexamer, and activates NBD2

Chemical Resources Laboratory, R-1, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-8503, Japan.
Journal of Biological Chemistry (Impact Factor: 4.6). 08/2005; 280(26):24562-7. DOI: 10.1074/jbc.M414623200
Source: PubMed

ABSTRACT The molecular chaperone ClpB can rescue the heat-damaged proteins from an aggregated state in cooperation with other chaperones. It has two nucleotide binding domains (NBD1 and NBD2) and forms a hexamer ring in a manner dependent on ATP binding to NBD1. In the crystal structure of ClpB with both NBDs filled by nucleotides, the linker between two NBDs forms an 85-A-long coiled-coil that extends on the outside of the hexamer and leans to NBD1. To probe the possible motion of the coiled-coil, we tested the accessibility of a labeling reagent, fluorescence change of a labeled dye, and cross-linking between the coiled-coil and NBD1 by using the mutants with defective NBD1 or NBD2. The results suggest that the coiled-coil is more or less parallel to the main body of ClpB in the absence of nucleotide and that ATP binding to NBD1 brings it to the leaning position as seen in the crystal structure. This motion results in stabilization of the hexamer form of ClpB and promotion of ATP hydrolysis at NBD2.

0 Followers
 · 
31 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane-associated ATPase constitutes an essential element common to all secretion machineries in Gram-negative bacteria. How ATP hydrolysis by these ATPases is coupled to secretion process remains unclear. Here we identified R286 as a key residue in the type II secretion system (T2SS) ATPase XpsE of Xanthomonas campestris that plays a pivotal role in coupling ATP hydrolysis to protein translocation. Mutation of R286 to alanine made XpsE hydrolyse ATP at a rate five times that of the wild-type XpsE. Yet the mutant XpsE(R286A) is non-functional in protein secretion via T2SS. Detailed analyses indicated that the mutant XpsE(R286A) lost the ability co-ordinating the N- and C-domain of XpsE. Without significantly influencing XpsE binding affinity with ATP or its oligomerization, R286A mutation however, caused XpsE lose the ability to associate with the cytoplasmic membrane via XpsL(N). As a consequence, ATP hydrolysis by XpsE was uncoupled from protein secretion. Because R286 is highly conserved among members of the secretion NTPase superfamily, we speculate that its equivalent in other homologues may also play a critical energy coupling role for T2SS, type IV pilus assembly and type IV secretion system.
    Molecular Microbiology 08/2007; 65(2):401-12. DOI:10.1111/j.1365-2958.2007.05795.x · 5.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Homooligomeric LonA proteases are the key components of the protein quality control system in bacteria and eukaryotes. Domain organization of the common pool of LonA proteases is determined by comparative analysis of primary and secondary structures of a number of bacterial and eukaryotic enzymes. The similarity of individual enzyme domains was estimated, domain-domain linker areas were revealed, regions that are capable to include intercalated peptide fragments were identified. LonA proteases were shown to be unique AAA+ proteins, because in addition to the classic AAA+ module they contain a part of another AAA+ module, namely the alpha-helical domain including a coiled-coil region, which is similar to the alpha-helical domain of the AAA(+)-1 module of the chaperone-disagregases ClpB/Hsp104.
    Bioorganicheskaia khimiia 05/2013; 39(3):303-19. DOI:10.1134/S1068162013030114
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Das molekulare Chaperon Hsp104 aus Saccharomyces cerevisiae ist eine hexamere AAA<sup>+</sup>-ATPase, die direkt an der Auflösung von Proteinaggregaten und an der Prionenreplikation beteiligt ist. Es wurde gezeigt, dass die ATP-Hydrolyse innerhalb eines Hexamers hoch allosterisch reguliert ist und vermutlich einem nicht-konzertierten ATPase-Zyklus unterworfen ist. Ferner reduzieren micromolare Mengen an Guanidiniumchlorid (GdmCl) spezifisch die ATPase-Aktivität von Hsp104. GdmCl wirkt als unkompetitver Inhibitor und stört die Allosterie von Hsp104. Weiterhin wurde erstmals eine direkte Interaktion von Hsp104 mit einem Co-Chaperon nachgewiesen. Das cyclophilin Cpr6 bindet – vermutlich über eine TPR-Interaktion – an den C-terminus von Hsp104. Diese Interaktion existiert sowohl in vitro als auch in vivo und ist relevant für die Hsp104-vermittelte Thermotoleranz und Prionenreplikation von Hefe. Hierbei wirkt Cpr6 als Modulator der ATPase-Aktivität und erhöht die Effizienz der Chaperon-Funktion von Hsp104. Durch die Interaktion zu Cpr6 wird Hsp104 in das auf TPR-Proteinen-basierende Hsp70/Hsp90 Chaperon-Netzwerk in Hefe integriert.