Repetitive extragenic palindromic sequences in the Pseudomonas syringae pv. tomato DC3000 genome: extragenic signals for genome reannotation.

Bioinformatics Unit, Era7 Information Technologies, C/Río Tajo 49, Las Gabias, Granada 18110, Spain.
Research in Microbiology (Impact Factor: 2.83). 05/2005; 156(3):424-33. DOI: 10.1016/j.resmic.2004.10.014
Source: PubMed

ABSTRACT Repetitive extragenic palindromic (REPs) sequences were first described in enterobacteriacea and later in Pseudomonas putida. We have detected a new variant (51 base pairs) of REP sequences that appears to be disseminated in more than 300 copies in the Pseudomonas syringae DC3000 genome. The finding of REP sequences in P. syringae confirms the broad presence of this type of repetitive sequence in bacteria. We analyzed the distribution of REP sequences and the structure of the clusters, and we show that palindromy is conserved. REP sequences appear to be allocated to the extragenic space, with a special preference for the intergenic spaces limited by convergent genes, while their presence is scarce between divergent genes. Using REP sequences as markers of extragenicity we re-annotated a set of genes of the P. syringae DC3000 genome demonstrating that REP sequences can be used for refinement of annotation of a genome. The similarity detected between virulence genes from evolutionarily distant pathogenic bacteria suggests the acquisition of clusters of virulence genes by horizontal gene transfer. We did not detect the presence of P. syringae REP elements in the principal pathogenicity gene clusters. This absence suggests that genome fragments lacking REP sequences could point to regions recently acquired from other organisms, and REP sequences might be new tracers for gaining insight into key aspects of bacterial genome evolution, especially when studying pathogenicity acquisition. In addition, as the P. syringae REP sequence is species-specific with respect to the sequenced genomes, it is an exceptional candidate for use as a fingerprint in precise genotyping and epidemiological studies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The plant is an attractive versatile home for diverse associated microbes. A subset of these microbes produces a diversity of anti-microbial natural products including polyketides, non-ribosomal peptides, terpenoids, heterocylic nitrogenous compounds, volatile compounds, bacteriocins, and lytic enzymes. In recent years, detailed molecular analysis has led to a better understanding of the underlying genetic mechanisms. New genomic and bioinformatic tools have permitted comparisons of orthologous genes between species, leading to predictions of the associated evolutionary mechanisms responsible for diversification at the genetic and corresponding biochemical levels. The purpose of this review is to describe the biodiversity of biosynthetic genes of plant-associated bacteria and fungi that encode selected examples of antimicrobial natural products. For each compound, the target pathogen and biochemical mode of action are described, in order to draw attention to the complexity of these phenomena. We review recent information of the underlying molecular diversity and draw lessons through comparative genomic analysis of the orthologous coding sequences (CDS). We conclude by discussing emerging themes and gaps, discuss the metabolic pathways in the context of the phylogeny and ecology of their microbial hosts, and discuss potential evolutionary mechanisms that led to the diversification of biosynthetic gene clusters.
    Frontiers in Plant Science 04/2015; 6:231. DOI:10.3389/fpls.2015.00231 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.
    PLoS Genetics 07/2012; 8(7):e1002784. DOI:10.1371/journal.pgen.1002784 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: REPs (Repetitive Extragenic Palindromes) are small (20--40 bp) palindromic repeats found in high copies in some prokaryotic genomes, hypothesized to play a role in DNA supercoiling, transcription termination, mRNA stabilization. We have monitored a large number of REP elements in prokaryotic genomes, and found that most can be sorted into two large DNA super-families, as they feature at one end unpaired motifs fitting either the GTAG or the CGTC consensus. Tagged REPs have been identified in >80 species in 8 different phyla. GTAG and CGTC repeats reside predominantly in microorganisms of the gamma and alpha division of Proteobacteria, respectively. However, the identification of members of both super- families in deeper branching phyla such Cyanobacteria and Planctomycetes supports the notion that REPs are old components of the bacterial chromosome. On the basis of sequence content and overall structure, GTAG and CGTC repeats have been assigned to 24 and 4 families, respectively. Of these, some are species-specific, others reside in multiple species, and several organisms contain different REP types. In many families, most units are close to each other in opposite orientation, and may potentially fold into larger secondary structures. In different REP-rich genomes the repeats are predominantly located between unidirectionally and convergently transcribed ORFs. REPs are predominantly located downstream from coding regions, and many are plausibly transcribed and function as RNA elements. REPs located inside genes have been identified in several species. Many lie within replication and global genome repair genes. It has been hypothesized that GTAG REPs are miniature transposons mobilized by specific transposases known as RAYTs (REP associated tyrosine transposases). RAYT genes are flanked either by GTAG repeats or by long terminal inverted repeats (TIRs) unrelated to GTAG repeats. Moderately abundant families of TIRs have been identified in multiple species. CGTC REPs apparently lack a dedicated transposase. Future work will clarify whether these elements may be mobilized by RAYTs or other transposases, and assess if de-novo formation of either GTAG or CGTC repeats type still occurs.
    BMC Genomics 07/2013; 14(1):522. DOI:10.1186/1471-2164-14-522 · 4.04 Impact Factor