Progress in epidermolysis bullosa: the phenotypic spectrum of plectin mutations.

Department of Dermatology and Cutaneous Biology, Jefferson Medical College, and DebRA Molecular Diagnostics Laboratory, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Experimental Dermatology (Impact Factor: 4.12). 05/2005; 14(4):241-9. DOI: 10.1111/j.0906-6705.2005.00324.x
Source: PubMed

ABSTRACT Plectin, a large multidomain adhesive protein with versatile binding functions, is expressed in a number of tissues and cell types. In the skin, plectin is a critical component of hemidesmosomes, interacting with keratin intermediate filaments and beta4 integrin. Mutations in the plectin gene (PLEC1) result in fragility of skin, demonstrating blister formation at the level of hemidesmosomes. These blistering disorders belong to the spectrum of epidermolysis bullosa (EB) phenotypes, and three distinct variants because of plectin mutations have been identified. First, EB with muscular dystrophy, an autosomal recessive syndrome, is frequently caused by premature termination codon-causing mutations leading to the absence of plectin both in the skin and in the muscle. Second, a heterozygous missense mutation (R2110W) in PLEC1 has been documented in patients with EB simplex of the Ogna type, a rare autosomal dominant disorder. Finally, recent studies have disclosed plectin mutations in patients with EB with pyloric atresia, an autosomal recessive syndrome, frequently with lethal consequences. Collectively, these observations attest to the phenotypic spectrum of plectin mutations, and provide the basis for accurate genetic counselling with prognostic implications, as well as for prenatal diagnosis in families at the risk of recurrence of the disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidermolysis bullosa simplex (EBS) is a rare genetic condition typified by superficial bullous lesions following incident frictional trauma to the skin. Most cases of EBS are due to dominantly acting mutations in keratin 14 (K14) or K5, the type I and II intermediate filament (IF) proteins that copolymerize to form a pancytoplasmic network of 10 nm filaments in basal keratinocytes of epidermis and related epithelia. Defects in K5-K14 filament network architecture cause basal keratinocytes to become fragile, and account for their rupture upon exposure to mechanical trauma. The discovery of the etiology and pathophysiology of EBS was intimately linked to the quest for an understanding of the properties and function of keratin filaments in skin epithelia. Since then, continued cross-fertilization between basic science efforts and clinical endeavors has highlighted several additional functional roles for keratin proteins in the skin, suggested new avenues for effective therapies for keratin-based diseases, and expanded our understanding of the remarkable properties of the skin as an organ system.
    Journal of Investigative Dermatology 03/2012; 132(3 Pt 2):763-75. DOI:10.1038/jid.2011.450 · 6.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.
    European journal of cell biology 02/2011; 90(5):390-400. DOI:10.1016/j.ejcb.2010.11.013 · 3.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plectin is a cytoskeletal linker protein which has a long central rod and N- and C-terminal globular domains. Mutations in the gene encoding plectin (PLEC) cause two distinct autosomal recessive subtypes of epidermolysis bullosa: EB simplex (EBS) with muscular dystrophy (EBS-MD), and EBS with pyloric atresia (EBS-PA). Previous studies have demonstrated that loss of full-length plectin with residual expression of the rodless isoform leads to EBS-MD, whereas complete loss or marked attenuation of expression of full-length and rodless plectin underlies the more severe EBS-PA phenotype. However, muscular dystrophy has never been identified in EBS-PA, not even in the severe form of the disease. Here, we report the first case of EBS associated with both pyloric atresia and muscular dystrophy. Both of the premature termination codon-causing mutations of the proband are located within exon 32, the last exon of PLEC. Immunofluorescence and immunoblot analysis of skin samples and cultured fibroblasts from the proband revealed truncated plectin protein expression in low amounts. This study demonstrates that plectin deficiency can indeed lead to both muscular dystrophy and pyloric atresia in an individual EBS patient.
    Human Mutation 10/2010; 31(10):E1687-98. DOI:10.1002/humu.21330 · 5.05 Impact Factor