Nonbridging phosphate oxygens in 16S rRNA important for 30S subunit assembly and association with the 50S ribosomal subunit.

4102 Urey Hall, Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA.
RNA (Impact Factor: 5.09). 06/2005; 11(5):657-67. DOI:10.1261/rna.7224305
Source: PubMed

ABSTRACT Ribosomes are composed of RNA and protein molecules that associate together to form a supramolecular machine responsible for protein biosynthesis. Detailed information about the structure of the ribosome has come from the recent X-ray crystal structures of the ribosome and the ribosomal subunits. However, the molecular interactions between the rRNAs and the r-proteins that occur during the intermediate steps of ribosome assembly are poorly understood. Here we describe a modification-interference approach to identify nonbridging phosphate oxygens within 16S rRNA that are important for the in vitro assembly of the Escherichia coli 30S small ribosomal subunit and for its association with the 50S large ribosomal subunit. The 30S small subunit was reconstituted from phosphorothioate-substituted 16S rRNA and small subunit proteins. Active 30S subunits were selected by their ability to bind to the 50S large subunit and form 70S ribosomes. Analysis of the selected population shows that phosphate oxygens at specific positions in the 16S rRNA are important for either subunit assembly or for binding to the 50S subunit. The X-ray crystallographic structures of the 30S subunit suggest that some of these phosphate oxygens participate in r-protein binding, coordination of metal ions, or for the formation of intersubunit bridges in the mature 30S subunit. Interestingly, however, several of the phosphate oxygens identified in this study do not participate in any interaction in the mature 30S subunit, suggesting that they play a role in the early steps of the 30S subunit assembly.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Protein-RNA interactions play important role in many biological processes such as gene regulation, replication, protein synthesis and virus assembly. Although many structures of various types of protein-RNA complexes have been determined, the mechanism of protein-RNA recognition remains elusive. We have earlier shown that the simplest electrostatic properties viz. charge, dipole and quadrupole moments, calculated from backbone atomic coordinates of proteins are biased relative to other proteins, and these quantities can be used to identify DNA-binding proteins. Closely related, RNA-binding proteins are investigated in this study. In particular, discrimination between various types of RNA-binding proteins, evolutionary conservation of these bulk electrostatic features and effect of conformational changes by complex formation are investigated. Basic binding mechanism of a putative RNA-binding protein (HI1333 from Haemophilus influenza) is suggested as a potential application of this study. We found that similar to DNA-binding proteins (DBPs), RNA-binding proteins (RBPs) also show significantly higher values of electric moments. However, higher moments in RBPs are found to strongly depend on their functional class: proteins binding to ribosomal RNA (rRNA) constitute the only class with all three of the properties (charge, dipole and quadrupole moments) being higher than control proteins. Neural networks were trained using leave-one-out cross-validation to predict RBPs from control data as well as pair-wise classification capacity between proteins binding to various RNA types. RBPs and control proteins reached up to 78% accuracy measured by the area under the ROC curve. Proteins binding to rRNA are found to be best distinguished (AUC = 79%). Changes in dipole and quadrupole moments between unbound and bound structures were small and these properties are found to be robust under complex formation. Bulk electric moments of proteins considered here provide insights into target recognition by RNA-binding proteins, as well as ability to recognize one type of RBP from others. These results help in understanding the mechanism of protein-RNA recognition, and identifying RNA-binding proteins.
    BMC Structural Biology 02/2011; 11:8. · 2.10 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In eubacteria, stalled ribosomes are rescued by a conserved quality-control mechanism involving transfer-messenger RNA (tmRNA) and its protein partner, SmpB. Mimicking a tRNA, tmRNA enters stalled ribosomes, adds Ala to the nascent polypeptide, and serves as a template to encode a short peptide that tags the nascent protein for destruction. To further characterize the tagging process, we developed two genetic selections that link tmRNA activity to cell death. These negative selections can be used to identify inhibitors of tagging or to identify mutations in key residues essential for ribosome rescue. Little is known about which ribosomal elements are specifically required for tmRNA activity. Using these selections, we isolated rRNA mutations that block the rescue of ribosomes stalled at rare Arg codons or at the inefficient termination signal Pro-opal. We found that deletion of A1150 in the 16S rRNA blocked tagging regardless of the stalling sequence, suggesting that it inhibits tmRNA activity directly. The C889U mutation in 23S rRNA, however, lowered tagging levels at Pro-opal and rare Arg codons, but not at the 3' end of an mRNA lacking a stop codon. We concluded that the C889U mutation does not inhibit tmRNA activity per se but interferes with an upstream step intermediate between stalling and tagging. C889 is found in the A-site finger, where it interacts with the S13 protein in the small subunit (forming intersubunit bridge B1a).
    Journal of bacteriology 11/2009; 192(2):553-9. · 3.94 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Mutations of mitochondrial DNA are linked to many human diseases. Despite the identification of a large number of variants in the mitochondrially-encoded rRNA (mt-rRNA) genes, the evidence supporting their pathogenicity is, at best, circumstantial. Establishing the pathogenicity of these variations is of major diagnostic importance. Here, we aim to estimate the disruptive effect of mt-rRNA variations on the function of the mitochondrial ribosome. In the absence of direct biochemical methods to study the effect of mt-rRNA variations, we relied on the universal conservation of the rRNA fold to infer their disruptive potential. Our method, named Heterologous Inferential Analysis or HIA, combines conservational information with functional and structural data obtained from heterologous ribosomal sources. Thus, HIA's predictive power is superior to the traditional reliance on simple conservation indexes. By using HIA we have been able to evaluate the disruptive potential for a subset of uncharacterized 12S mt-rRNA variations. Our analysis revealed the existence of variations in the rRNA component of the human mitoribosome with different degrees of disruptive power. In cases where sufficient information regarding the genetic and pathological manifestation of the mitochondrial phenotype is available, HIA data can be used to predict the pathogenicity of mt-rRNA mutations. In other cases, HIA analysis will allow the prioritisation of variants for additional investigation. Eventually, HIA-inspired analysis of potentially pathogenic mt-rRNA variations, in the context of a scoring system specifically designed for these variants, could lead to a powerful diagnostic tool.
    Human Molecular Genetics 10/2013; · 7.69 Impact Factor


Available from

Srikanta Ghosh