Article

Measuring the fate of plant diversity: towards a foundation for future monitoring and opportunities for urgent action.

Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK.
Philosophical Transactions of The Royal Society B Biological Sciences (Impact Factor: 6.31). 03/2005; 360(1454):359-72. DOI: 10.1098/rstb.2004.1596
Source: PubMed

ABSTRACT Vascular plants are often considered to be among the better known large groups of organisms, but gaps in the available baseline data are extensive, and recent estimates of total known (described) seed plant species range from 200000 to 422000. Of these, global assessments of conservation status using International Union for the Conservation of Nature (IUCN) categories and criteria are available for only approximately 10000 species. In response to recommendations from the Conference of the Parties to the Convention on Biological Diversity to develop biodiversity indicators based on changes in the status of threatened species, and trends in the abundance and distribution of selected species, we examine how existing data, in combination with limited new data collection, can be used to maximum effect. We argue that future work should produce Red List Indices based on a representative subset of plant species so that the limited resources currently available are directed towards redressing taxonomic and geographical biases apparent in existing datasets. Sampling the data held in the world's major herbaria, in combination with Geographical Information Systems techniques, can produce preliminary conservation assessments and help to direct selective survey work using existing field networks to verify distributions and gather population data. Such data can also be used to backcast threats and potential distributions through time. We outline an approach that could result in: (i) preliminary assessments of the conservation status of tens of thousands of species not previously assessed, (ii) significant enhancements in the coverage and representation of plant species on the IUCN Red List, and (iii) repeat and/or retrospective assessments for a significant proportion of these. This would result in more robust Sampled Red List Indices that can be defended as more representative of plant diversity as a whole; and eventually, comprehensive assessments at species level for one or more major families of angiosperms. The combined results would allow scientifically defensible generalizations about the current status of plant diversity by 2010 as well as tentative comments on trends. Together with other efforts already underway, this approach would establish a firmer basis for ongoing monitoring of the status of plant diversity beyond 2010 and a basis for comparison with the trend data available for vertebrates.

0 Bookmarks
 · 
189 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The best known system for classifying threat status of species, the IUCN Red List, currently lacks explicit considerations of genetic diversity, and consequently may not account for potential adaptation of species to future environmental change. To address this gap, we integrate range-wide genetic analysis with IUCN Red List assessments. We calculated the loss of genetic diversity under simulated range loss for species of Delonix (Leguminosae). Simulated range loss involved random loss of populations and was intended to model ongoing habitat destruction. We found a strong relationship between loss of genetic diversity and range. Moreover, we found correspondence between levels of genetic diversity and thresholds for ‘non-threatened’ versus ‘threatened’ IUCN Red List categories. Our results support the view that current threat thresholds of the IUCN Red List criteria reflect genetic diversity, and hence evolutionary potential; although the genetic diversity distinction between threatened categories was less evident. Thus, by supplementing conventional conservation assessments with genetic data, new insights into the biological robustness of IUCN Red List assessments for targeted conservation initiatives can be achieved.
    12/2014; DOI:10.1016/j.gecco.2014.08.005
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evolutionary studies have played a fundamental role in our understanding of life, but until recently, they had only a relatively modest involvement in addressing conservation issues. The main goal of the present discussion meeting issue is to offer a platform to present the available methods allowing the integration of phylogenetic and extinction risk data in conservation planning. Here, we identify the main knowledge gaps in biodiversity science, which include incomplete sampling, reconstruction biases in phylogenetic analyses, partly known species distribution ranges, and the difficulty in producing conservation assessments for all known species, not to mention that much of the effective biological diversity remains to be discovered. Given the impact that human activities have on biodiversity and the urgency with which we need to address these issues, imperfect assumptions need to be sanctioned and surrogates used in the race to salvage as much as possible of our natural and evolutionary heritage. We discuss some aspects of the uncertainties found in biodiversity science, such as the ideal surrogates for biodiversity, the gaps in our knowledge and the numerous available phylogenetic diversity-based methods. We also introduce a series of cases studies that demonstrate how evolutionary biology can effectively contribute to biodiversity conservation science. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
    Philosophical Transactions of The Royal Society B Biological Sciences 02/2015; 370(1662). DOI:10.1098/rstb.2014.0002 · 6.31 Impact Factor

Full-text (2 Sources)

Download
44 Downloads
Available from
May 26, 2014