Article

Mechanisms of clinical resistance to small molecule tyrosine kinase inhibitors targeting oncogenic tyrosine kinases.

Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
American Journal of PharmacoGenomics 02/2005; 5(2):101-12. DOI: 10.2165/00129785-200505020-00003
Source: PubMed

ABSTRACT A number of highly specific small molecule inhibitors of oncogenic tyrosine kinases have been developed and may potentially improve the treatment of different malignant diseases. However, it became rapidly evident that multiple resistance mechanisms compromise the successful clinical application of these inhibitors, particularly in advanced solid tumors. To develop efficient therapeutic strategies with small molecule inhibitors, one must understand the causes for treatment failure. Three different types of resistance to small molecule inhibitors of oncogenic tyrosine kinases have been observed. The malignant phenotype may be independent of the activity of the target kinase (target-independent resistance). Alternatively, overexpression or mutation of the target kinase can counteract the inhibition of oncogenic tyrosine kinases (target-dependent resistance). Finally, alterations of drug transporters or drug-metabolizing pathways may block the bioavailability of the tyrosine kinase inhibitors (drug-dependent resistance). This article reviews the current knowledge of clinical resistance to small molecule inhibitors approved for treatment of cancer patients.

0 Bookmarks
 · 
68 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ikaros plays an important role in the control of differentiation and proliferation of all lymphoid lineages. The expression of short isoforms lacking DNA-binding motifs alters the differentiation capacities of hematopoietic progenitors, arresting lineage commitment. We sought to determine whether molecular abnormalities involving the IKZF1 gene were associated with resistance to tyrosine kinase inhibitors (TKIs) in Ph+ acute lymphoblastic leukemia (ALL) patients. Using reverse-transcribed polymerase chain reaction, cloning, and nucleotide sequencing, only the non-DNA-binding Ik6 isoform was detected in 49% of Ph+ ALL patients. Ik6 was predominantly localized to the cytoplasm versus DNA-binding Ik1 or Ik2 isoforms, which showed nuclear localization. There was a strong correlation between nonfunctional Ikaros isoforms and BCR-ABL transcript level. Furthermore, patient-derived leukemia cells expressed oncogenic Ikaros isoforms before TKI treatment, but not during response to TKIs, and predominantly at the time of relapse. In vitro overexpression of Ik6 strongly increased DNA synthesis and inhibited apoptosis in TKI-sensitive cells. Genomic sequence and computational analyses of exon splice junction regions of IKZF1 in Ph+ ALL patients predicted several mutations that may alter alternative splicing. These results establish a previously unknown link between specific molecular defects that involve alternative splicing of the IKZF1 gene and the resistance to TKIs in Ph+ ALL patients.
    Blood 11/2008; 112(9):3847-55. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Owing to its biological properties, RNA interference (RNAi) holds the greatest promise as a therapeutic agent for the treatment of a wide range of diseases. The following review is based on the most recent discoveries of RNAi biological mechanisms, highlighting their efficacy, safety, in vivo delivery and use in future clinical trials. Objectives: This review highlights recent advances in RNAi research and focuses on RNAi therapeutic patents for neurodegenerative diseases of the CNS. Method: We used online database free patent resources to summarize RNAi discoveries with particular attention to those regarding the CNS application. We attempted to include the major contributions in the field, and the list of patents reviewed should be considered exhaustive. Conclusion: Patents cover a wide range of RNAi-related fields: molecular findings for understanding RNAi mechanisms, delivery systems and RNAi-based therapeutic applications for neurodegenerative diseases of the CNS.
    10/2008; 18(10):1161-1174.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Head and neck cancer constitutes the 6th most common malignancy worldwide and affects the crucial anatomical structures and physiological functions of the upper aerodigestive tract. Classical therapeutic strategies such as surgery and radiotherapy carry substantial toxicity and functional impairment. Moreover, the loco-regional control rates as well as overall survival still need to be improved in subgroups of patients. The scatter-factor/hepatocyte growth factor receptor tyrosine kinase MET is an established effector in the promotion, maintenance and progression of malignant transformation in a wide range of human malignancies, and has been gaining considerable interest in head and neck cancer over the last 15years. Aberrant MET activation due to overexpression, mutations, tumor-stromal paracrine loops, and cooperative/redundant signaling has been shown to play prominent roles in epithelial-to-mesenchymal transition, angiogenesis, and responses to anti-cancer therapeutic modalities. Accumulating preclinical and translational evidence highly supports the increasing interest of MET as a biomarker for lymph node and distant metastases, as well as a potential marker of stratification for responses to ionizing radiation. The relevance of MET as a therapeutic molecular target in head and neck cancer described in preclinical studies remains largely under-evaluated in clinical trials, and therefore inconclusive. Also in the context of anti-cancer targeted therapy, a large body of preclinical data suggests a central role for MET in treatment resistance towards multiple therapeutic modalities in malignancies of the head and neck region. These findings, as well as the potential use of combination therapies including MET inhibitors in these tumors, need to be further explored.
    Pharmacology [?] Therapeutics 04/2014; · 7.79 Impact Factor