Avian cholera in waterfowl: the role of lesser snow and ross's geese as disease carriers in the Playa Lakes Region.

US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711, USA.
Journal of wildlife diseases (Impact Factor: 1.31). 01/2005; 41(1):48-57. DOI: 10.7589/0090-3558-41.1.48
Source: PubMed

ABSTRACT We collected samples from apparently healthy geese in the Playa Lakes Region (USA) during the winters of 2000-01 and 2001-02 to determine whether carriers of Pasteurella multocida, the bacterium that causes avian cholera, were present in wild populations. With the use of methods developed in laboratory challenge trials (Samuel et al., 2003a) and a serotype-specific polymerase chain reaction method for identification of P. multocida serotype 1, we found that a small proportion of 322 wild birds (<5%) were carriers of pathogenic P. multocida. On the basis of serology, an additional group of these birds (<10%) were survivors of recent avian cholera infection. Our results confirm the hypothesis that wild waterfowl are carriers of avian cholera and add support for the hypothesis that wild birds are a reservoir for this disease. In concert with other research, this work indicates that enzootic infection with avian cholera occurs in lesser snow goose (Chen caerulescens caerulescens) populations throughout their annual cycle. Although fewer Ross's geese (Chen rossii) were sampled, we also found these birds were carriers of P. multocida. Even in the absence of disease outbreaks, serologic evidence indicates that chronic disease transmission and recent infection are apparently occurring year-round in these highly gregarious birds and that a small portion of these populations are potential carriers with active infection.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In natural populations, epidemics provide opportunities to look for intense natural selection on genes coding for life history and immune or other physiological traits. If the populations being considered are of management or conservation concern, then identifying the traits under selection (or ‘markers’) might provide insights into possible intervention strategies during epidemics. We assessed potential for selection on multiple immune and life history traits of Arctic breeding common eiders (Somateria mollissima) during annual avian cholera outbreaks (summers of 2006, 2007 & 2008). We measured prelaying body condition, immune traits, and subsequent reproductive investment (i.e., clutch size) and survival of female common eiders and whether they were infected with Pasteurella multocida, the causative agent of avian cholera. We found no clear and consistent evidence of directional selection on immune traits; however, infected birds had higher levels of haptoglobin than uninfected birds. Also, females that laid larger clutches had slightly lower immune responses during the prelaying period reflecting possible downregulation of the immune system to support higher costs of reproduction. This supports a recent study indicating that birds investing in larger clutches were more likely to die from avian cholera and points to a possible management option to maximize female survival during outbreaks.
    Evolutionary Applications 06/2014; 7(7). DOI:10.1111/eva.12180 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A spring hunt was instituted in North America to reduce abundance of snow geese (Chen caerulescens) by increasing mortality of adults directly, yet disturbance from hunting activities can indirectly influence body condition and ultimately, reproductive success. We estimated effects of hunting disturbance by comparing body composition of snow geese and non-target species, greater white-fronted geese (Anser albifrons) and northern pintails (Anas acuta) collected in portions of south-central Nebraska that were open (eastern Rainwater Basin, ERB) and closed (western Rainwater Basin, WRB; and central Platte River Valley, CPRV) to snow goose hunting during springs 1998 and 1999. Lipid content of 170 snow geese was 25% (57 g) less in areas open to hunting compared to areas closed during hunting season but similar in all areas after hunting was concluded in the ERB. Protein content of snow geese was 3% (14 g) less in the region open to hunting. Greater white-fronted geese had 24% (76 g; n = 129) less lipids in the hunted portion of the study area during hunting season, and this difference persisted after conclusion of hunting season. We found little difference in lipid or protein content of northern pintails in relation to spring hunting. Indirect effects of spring hunting may be considered a collateral benefit regarding efforts to reduce overabundant snow goose populations. Disrupted nutrient storage observed in greater white-fronted geese represents an unintended consequence of spring hunting that has potential to adversely affect reproduction for this and other species of waterbirds staging in the region. © 2012 The Wildlife Society.
    Journal of Wildlife Management 09/2012; 76(7):1393-1400. DOI:10.1002/jwmg.389 · 1.61 Impact Factor
  • Source
    American Midland Naturalist 04/2013; 169(2):371-381. DOI:10.1674/0003-0031-169.2.371 · 0.62 Impact Factor