Cytotoxic effects of 100 reference compounds on Hep G2 and HeLa cells and of 60 compounds on ECC-1 and CHO cells. I mechanistic assays on ROS, glutathione depletion and calcein uptake.

Department of Pharmacology, N.V. Organon, Molenstraat 110, 5340 BH Oss, The Netherlands.
Toxicology in Vitro (Impact Factor: 3.21). 07/2005; 19(4):505-16. DOI: 10.1016/j.tiv.2005.01.003
Source: PubMed

ABSTRACT In this study fluorometric assays have been used for medium throughput screening on toxicity. Dichlorofluorescein diacetate, monochlorobimane and calcein-AM were fluorophores for the measurement of the formation of reactive oxygen species (ROS), the quantification of glutathione and the membrane stability, respectively. These assays have been carried out in the presence or absence of toxic compounds and with four different cell lines, i.e. human liver (Hep G2), human endometrium (ECC-1), human cervix (HeLa) and Chinese hamster ovary cells (CHO). In these assays the toxic dose of 60 reference compounds was assessed for Hep G2, HeLa, ECC-1 and CHO cells and of 40 pharmaceutical compounds for Hep G2 (ROS, glutathione) or HeLa (calcein) cells, only. These compounds were narcotic analgesics, hypnotics, vasodilators, specific cellular energy blockers, cellular proliferation inhibitors, ion channel blockers, estrogens, antiestrogens, androgens, progestagens and others. The outcome of this study revealed that all four cell lines were responsive to the same set of drugs. Only for some drugs Hep G2 cells appear slightly more sensitive, as compared to the other three cell lines. In general the HeLa cell line was the most sensitive cell line for the calcein uptake, while the Hep G2 cell line shows slightly more sensitivity for dichorofluorescein and monochlorobimane assays than the other three cell lines. Further evaluation at higher toxic dosages with Hep G2 cells for ROS and glutathione depletion and HeLa cells for calcein uptake, demonstrated toxic effects for 56 of the 100 reference compounds in these assays, among which there were estrogens, androgens, progestagens and antiestrogens. In conclusion, almost all tested compounds gave similar dose and toxicity effects on the permanent cell lines used in this study. Only three compounds showed more tissue specific cell responses. This shows that in principle all four cell lines can be used for toxicity screening.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, and flow cytometry techniques were evaluated as tools for rapid screening of potential genotoxicity of food-related nanosilver. Comparative genotoxic potential of 20 nm silver was evaluated in HepG2 and Caco2 cell cultures by a flow cytometric-based in vitro micronucleus assay. The nanosilver, characterized by the dynamic light scattering, transmission electron microscopy and inductively coupled plasma–mass spectrometry analysis, showed no agglomeration of the silver nanoparticles. The inductively coupled plasma–mass spectrometry and transmission electron microscopy analysis demonstrated the uptake of 20 nm silver by both cell types. The 20 nm silver exposure of HepG2 cells increased the concentration-dependent micronucleus formation sevenfold at 10 µg ml–1 concentration in attached cell conditions and 1.3-fold in cell suspension conditions compared to the vehicle controls. However, compared to the vehicle controls, the 20 nm silver exposure of Caco2 cells increased the micronucleus formation 1.2-fold at a concentration of 10 µg ml–1 both in the attached cell conditions as well as in the cell suspension conditions. Our results of flow cytometric in vitro micronucleus assay appear to suggest that the HepG2 cells are more susceptible to the nanosilver-induced micronucleus formation than the Caco2 cells compared to the vehicle controls. However, our results also suggest that the widely used in vitro models, HepG2 and Caco2 cells and the flow cytometric in vitro micronucleus assay are valuable tools for the rapid screening of genotoxic potential of nanosilver and deserve more careful evaluation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
    Journal of Applied Toxicology 11/2014; 34(11). DOI:10.1002/jat.3065 · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The liver is the most important target for drug-induced toxicity. This vulnerability results from functional liver features and its role in the metabolic elimination of most drugs. Drug-induced liver injury is a significant leading cause of acute, chronic liver disease and an important safety issue when developing new drugs.Areas covered: This review describes the advantages and limitations of hepatic cell-based models for early safety risk assessment during drug development. These models include hepatocytes cultured as monolayer, collagen-sandwich; emerging complex 3D configuration; liver-derived cell lines; stem cell-derived hepatocytes.Expert opinion: In vitro toxicity assays performed in hepatocytes or hepatoma cell lines can potentially provide rapid and cost–effective early feedback to identify toxic candidates for compound prioritization. However, their capacity to predict hepatotoxicity depends critically on cells’ functional performance. In an attempt to improve and prolong functional properties of cultured cells, different strategies to recreate the in vivo hepatocyte environment have been explored. 3D cultures, co-cultures of hepatocytes with other cell types and microfluidic devices seem highly promising for toxicological studies. Moreover, hepatocytes derived from human pluripotent stem cells are emerging cell-based systems that may provide a stable source of hepatocytes to reliably screen metabolism and toxicity of candidate compounds.
    Expert Opinion on Drug Metabolism &amp Toxicology 10/2014; 10(11). DOI:10.1517/17425255.2014.967680 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The safety of herbal medicine products has been a widespread concern due to their complex chemical nature and lack of proper evaluation methods. We have adapted a sensitive and reproducible multiparametric cell-based high-content analysis assay to evaluate the hepatic-safety of four Chinese medicine injections and validated it with classical animal-based toxicity assays. Our results suggested that the reported hepatotoxicity by one of the drugs, Fufangkushen injection, could be attributed at least in part to the interference of mitochondrial function in human HepG2 cells by some of its constituents. This method should be useful for both preclinical screen in a drug discovery program and postclinical evaluation of herbal medicine preparations.
    Evidence-based Complementary and Alternative Medicine 01/2015; 2015:1-13. DOI:10.1155/2015/379586 · 2.18 Impact Factor