Article

Light conditions alter accumulation of long chain polyprenols in leaves of trees and shrubs throughout the vegetation season.

Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland.
Acta biochimica Polonica (Impact Factor: 1.19). 02/2005; 52(1):233-41.
Source: PubMed

ABSTRACT In many plants belonging to angiosperms and gymnosperms the accumulation in leaves of long chain polyprenols and polyprenyl esters during growth in natural habitats depends on the light intensity. The amount of polyprenols in leaves is also positively correlated with the thickness of the leaf blade (SLA, specific leaf area). The polyprenol content of leaves shows seasonal changes with a maximum in autumn and a minimum in early summer with the difference between poorly and well illuminated plants persisting throughout the vegetation season.

0 Bookmarks
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soil contamination caused by the NaCl used to de-ice slippery roads in winter is now recognized as one of the major causes of nutrient disorders and death in urban trees. It is believed that polyisoprenoids may have a specific role in the adaptation of plants to adverse conditions and habitats; it is further believed that in the cell, they may exhibit a protective effect in response to biotic and abiotic stress. The aim of this study was to evaluate the effect of salt stress on the content of prenol lipids in the leaves of Crimean linden (Tilia 'Euchlora'). The Cl content in the slightly damaged ("healthy") leaves averaged 0.96%, while that in the heavily damaged ("sick") leaves averaged 2.02%. The leaves of control trees contained on average 0.57% Cl. The Na contents in the healthy and damaged leaves were 208 mg/kg and 1038 mg/kg, respec-tively, and the Na content in the control areas was 63 mg/kg. A mixture of polyprenols consisting of four compounds, prenol-9, prenol-10, prenol-11 and prenol-12, was identified in the leaves of Crimean linden. This mixture was dominated by prenol-10 (2.16–6.90 mg/g). The polyprenol content was highest in the leaves of "healthy" trees (approximately 13.31 mg/g), was lower in the case of "sick" trees (approximately 9.18 mg/g), and was the lowest in the control trees (mean 4.71 mg/g). No changes were observed in the composition of the mixture of polyprenols under these conditions. The results suggest that polyprenols may affect the accumulation of Cl in leaves. This phenomenon is evidenced by the high content of prenols in the leaves of trees considered "healthy" but growing under conditions of increased soil salinity and the lower content of prenols in the leaves of the "sick" and control trees. It is advisable to further investigate the role of prenol lipids in the leaves of trees subjected to salt stress. Additional key words: polyprenols, salt stress, de-icing urban trees, linden Addresses: A.
    Dendrobiology 01/2014; 72:177-186. · 0.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methyl (2Z, 6Z, 10E, 14E)-(3) and methyl (2E, 6Z, 10E, 14E)-geranylfarnesoate (4) were prepared, and then individually cyclized in the presence of the superacid FSO 3 H. In the case of substrate 3, the scalaranic ester 9 (26%) and the cheilanthanic ester 10 (39%) were isolated. Under the same conditions, substrate 4 afforded a mixture of the corresponding stereoisomers 11 (25%) and 12 (63%). The observed product selectivity supports that the internal,(6Z)-configured C [DOUBLE BOND] C bond in these and other ...
    Helvetica Chimica Acta 06/2007; · 1.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: cis-Prenyltransferases (CPTs) are predicted to be involved in the synthesis of long-chain polyisoprenoids, all with >5 isoprene (C5) units. Recently, we identified a short-chain CPT, neryl diphosphate synthase (NDPS1), in tomato (Solanum lycopersicum). Here, we searched the tomato genome and identified and characterized its entire CPT gene family, which is composed of seven members (SlCPT1-7, with NDPS1 designated as SlCPT1). Six SlCPT genes encode proteins with N-terminal targeting sequences, which, when fused to the green fluorescent protein (GFP), mediated GFP transport to the plastids of Arabidopsis protoplasts. The SlCPT3-GFP fusion protein was localized to the cytosol. Enzymatic characterization of recombinant SlCPT proteins demonstrated that SlCPT6 produces Z,Z-FPP and SlCPT2 catalyzes the formation of nerylneryl diphosphate, while SlCPT4, SlCPT5, and SlCPT7 synthesize longer chain products (C25-C55). While no in vitro activity could be demonstrated for SlCPT3, its expression in the Saccharomyces cerevisiae dolichol biosynthesis mutant (rer2) complemented the temperature sensitive growth defect. Transcripts of SlCPT2, SlCPT4, SlCPT5, and SlCPT7 are present at low levels in multiple tissues, SlCPT6 is exclusively expressed in red fruit and roots, and SlCPT1, SlCPT3 and SlCPT7 are highly expressed in trichomes. RNA interference-mediated suppression of NDPS1 led to a large decrease in β-phellandrene (which is made from neryl diphosphate), with greater reductions achieved with the general 35S promoter compared to the trichome-specific MKS1 promoter. Phylogenetic analysis revealed CPT gene families in both eudicots and monocots and that all the short-chain CPTs from tomato (SlCPT1, SlCPT2, and SlCPT6) are closely linked to terpene synthase gene clusters. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
    The Plant Journal 11/2012; · 6.58 Impact Factor

Full-text (2 Sources)

Download
23 Downloads
Available from
Jun 1, 2014