Development of a Citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol Biol

Instituto de Biologíia Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia, Laboratorio de Genómica, Spain.
Plant Molecular Biology (Impact Factor: 4.26). 03/2005; 57(3):375-91. DOI: 10.1007/s11103-004-7926-1
Source: PubMed


A functional genomics project has been initiated to approach the molecular characterization of the main biological and agronomical traits of citrus. As a key part of this project, a citrus EST collection has been generated from 25 cDNA libraries covering different tissues, developmental stages and stress conditions. The collection includes a total of 22,635 high-quality ESTs, grouped in 11,836 putative unigenes, which represent at least one third of the estimated number of genes in the citrus genome. Functional annotation of unigenes which have Arabidopsis orthologues (68% of all unigenes) revealed gene representation in every major functional category, suggesting that a genome-wide EST collection was obtained. A Citrus clementina Hort. ex Tan. cv. Clemenules genomic library, that will contribute to further characterization of relevant genes, has also been constructed. To initiate the analysis of citrus transcriptome, we have developed a cDNA microarray containing 12,672 probes corresponding to 6875 putative unigenes of the collection. Technical characterization of the microarray showed high intra- and inter-array reproducibility, as well as a good range of sensitivity. We have also validated gene expression data achieved with this microarray through an independent technique such as RNA gel blot analysis.

Download full-text


Available from: Javier Terol, Oct 09, 2015
39 Reads
  • Source
    • "For the microarray assay we used Citrus cDNA microarray slides consisting of 21.081 cDNA probes, generated by the Spanish Citrus Functional Genomics Project (CFGP) [55]. These probes correspond to Citrus-expressed sequence tags (EST) from different gene libraries [56]. For microarray hybridization, Cy5-labelled aRNA synthesized from each individual mRNA sample and Cy3-labelled aRNA synthesized from a reference sample consisting of a mixture of equal amounts of RNA from all experimental samples were combined in equal amounts (200 pmoles of each dye) and fragmented using the RNA Fragmentation Reagents (Ambion). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathogens interaction with a host plant starts a set of immune responses that result in complex changes in gene expression and plant physiology. Light is an important modulator of plant defense response and recent studies have evidenced the novel influence of this environmental stimulus in the virulence of several bacterial pathogens. Xanthomonas citri subsp. citri is the bacterium responsible for citrus canker disease, which affects most citrus cultivars. The ability of this bacterium to colonize host plants is influenced by bacterial blue-light sensing through a LOV-domain protein and disease symptoms are considerably altered upon deletion of this protein. In this work we aimed to unravel the role of this photoreceptor during the bacterial counteraction of plant immune responses leading to citrus canker development. We performed a transcriptomic analysis in Citrus sinensis leaves inoculated with the wild type X. citri subsp. citri and with a mutant strain lacking the LOV protein by a cDNA microarray and evaluated the differentially regulated genes corresponding to specific biological processes. A down-regulation of photosynthesis-related genes (together with a corresponding decrease in photosynthesis rates) was observed upon bacterial infection, this effect being more pronounced in plants infected with the lov-mutant bacterial strain. Infection with this strain was also accompanied with the up-regulation of several secondary metabolism- and defense response-related genes. Moreover, we found that relevant plant physiological alterations triggered by pathogen attack such as cell wall fortification and tissue disruption were amplified during the lov-mutant strain infection. These results suggest the participation of the LOV-domain protein from X. citri subsp. citri in the bacterial counteraction of host plant defense response, contributing in this way to disease development.
    PLoS ONE 11/2013; 8(11):e80930. DOI:10.1371/journal.pone.0080930 · 3.23 Impact Factor
  • Source
    • "The comparison of blind versus "known-haplotype" assemblies of shotgun sequences obtained from a set of BAC clones from the heterozygous sweet orange [61] led the ICGC to establish the reference sequence of the citrus genome from a homozygous genotype. A haploid plant derived from the Clementine was selected due to its immediate availability and preexisting molecular resources [26,27,62-64]. The selected haploid was obtained by induced gynogenesis after in situ pollination with irradiated pollen [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Most modern citrus cultivars have an interspecific origin. As a foundational step towards deciphering the interspecific genome structures, a reference whole genome sequence was produced by the International Citrus Genome Consortium from a haploid derived from Clementine mandarin. The availability of a saturated genetic map of Clementine was identified as an essential prerequisite to assist the whole genome sequence assembly. Clementine is believed to be a ‘Mediterranean’ mandarin × sweet orange hybrid, and sweet orange likely arose from interspecific hybridizations between mandarin and pummelo gene pools. The primary goals of the present study were to establish a Clementine reference map using codominant markers, and to perform comparative mapping of pummelo, sweet orange, and Clementine. Results Five parental genetic maps were established from three segregating populations, which were genotyped with Single Nucleotide Polymorphism (SNP), Simple Sequence Repeats (SSR) and Insertion-Deletion (Indel) markers. An initial medium density reference map (961 markers for 1084.1 cM) of the Clementine was established by combining male and female Clementine segregation data. This Clementine map was compared with two pummelo maps and a sweet orange map. The linear order of markers was highly conserved in the different species. However, significant differences in map size were observed, which suggests a variation in the recombination rates. Skewed segregations were much higher in the male than female Clementine mapping data. The mapping data confirmed that Clementine arose from hybridization between ‘Mediterranean’ mandarin and sweet orange. The results identified nine recombination break points for the sweet orange gamete that contributed to the Clementine genome. Conclusions A reference genetic map of citrus, used to facilitate the chromosome assembly of the first citrus reference genome sequence, was established. The high conservation of marker order observed at the interspecific level should allow reasonable inferences of most citrus genome sequences by mapping next-generation sequencing (NGS) data in the reference genome sequence. The genome of the haploid Clementine used to establish the citrus reference genome sequence appears to have been inherited primarily from the ‘Mediterranean’ mandarin. The high frequency of skewed allelic segregations in the male Clementine data underline the probable extent of deviation from Mendelian segregation for characters controlled by heterozygous loci in male parents.
    BMC Genomics 11/2012; 13(1):593. DOI:10.1186/1471-2164-13-593 · 3.99 Impact Factor
  • Source
    • "Moreover, microarrays for other non-model plant species show a similar distribution of GO BP processes, especially for “response to stimulus” and “cellular process” GO categories. However, as GO terms are dynamically updated, many terms mapped for the SUR v1.0 collection could differ from other annotations reported in other differential gene expression studies [21], [22], [23], [24], [26], [61], [62]. Our results show that the H. annuus L. microarray is suitable for functional genomics analysis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO ( The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01) allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement.
    PLoS ONE 10/2012; 7(10):e45899. DOI:10.1371/journal.pone.0045899 · 3.23 Impact Factor
Show more