Article

Integrin-linked kinase mediates bone morphogenetic protein 7-dependent renal epithelial cell morphogenesis.

Cancer Research Program, Research Institute, Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8, Canada.
Molecular and Cellular Biology (Impact Factor: 5.04). 06/2005; 25(9):3648-57. DOI: 10.1128/MCB.25.9.3648-3657.2005
Source: PubMed

ABSTRACT Bone morphogenetic protein 7 (BMP7) stimulates renal branching morphogenesis via p38 mitogen-activated protein kinase (p38(MAPK)) and activating transcription factor 2 (ATF-2) (M. C. Hu, D. Wasserman, S. Hartwig, and N. D. Rosenblum, J. Biol. Chem. 279:12051-12059, 2004). Here, we demonstrate a novel role for integrin-linked kinase (ILK) in mediating renal epithelial cell morphogenesis in embryonic kidney explants and identify p38(MAPK) as a target of ILK signaling in a cell culture model of renal epithelial morphogenesis. The spatial and temporal expression of ILK in embryonic mouse kidney cells suggested a role in branching morphogenesis. Adenovirus-mediated expression of ILK stimulated and expression of a dominant negative ILK mutant inhibited ureteric bud branching in embryonic mouse kidney explants. BMP7 increased ILK kinase activity in inner medullary collecting duct 3 (IMCD-3) cells, and adenovirus-mediated expression of ILK increased IMCD-3 cell morphogenesis in a three-dimensional culture model. In contrast, treatment with a small molecule ILK inhibitor or expression of a dominant negative-acting ILK (ILK(E359K)) inhibited epithelial cell morphogenesis. Further, expression of ILK(E359K) abrogated BMP7-dependent stimulation. To investigate the role of ILK in BMP7 signaling, we showed that ILK overexpression increased basal and BMP7-induced levels of phospho-p38(MAPK) and phospho-ATF-2. Consistent with its inhibitory effects on IMCD-3 cell morphogenesis, expression of ILK(E359K) blocked BMP7-dependent increases in phospho-p38(MAPK) and phospho-ATF-2. Inhibition of p38(MAPK) activity with the specific inhibitor, SB203580, failed to inhibit BMP7-dependent stimulation of ILK activity, suggesting that ILK functions upstream of p38(MAPK) during BMP7 signaling. We conclude that ILK functions in a BMP7/p38(MAPK)/ATF-2 signaling pathway and stimulates epithelial cell morphogenesis.

Download full-text

Full-text

Available from: Ming Chang Hu, Aug 06, 2014
0 Followers
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we investigated the involvement of integrin-linked kinase (ILK) in the adhesion of arteriolar vascular smooth muscle cells (VSMC) to fibronectin (FN) and in the mechano-responsiveness of VSMC focal adhesions (FA). ILK was visualized in VSMC by expressing EGFP-ILK and it was knocked down using ILK-shRNA constructs. Atomic force microscopy (AFM) was used to characterize VSMC interactions with FN, VSMC stiffness and to apply and measure forces at a VSMC single FA site. ILK was localized to FA and silencing ILK promoted cell spreading, enhanced cell adhesion, reduced cell proliferation and reduced downstream phosphorylation of GSK-3beta and PKB/Akt. AFM studies demonstrated that silencing ILK enhanced alpha5beta1 integrin adhesion to FN and enhanced VSMC contraction in response to a pulling force applied at the level of a single FN-FA site. ILK functions in arteriolar VSMC appear linked to multiple signaling pathways and processes that inhibit cell spreading, cell adhesion, FA formation, adhesion to FN and the mechano-responsiveness of FN-FA sites.
    Microcirculation (New York, N.Y.: 1994) 02/2010; 17(2):113-27. DOI:10.1111/j.1549-8719.2009.00011.x · 2.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Not Available
    Norchip Conference, 2004. Proceedings; 12/2004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interaction with integrin and focal adhesion kinase (FAK) regulates the cancer cell adhesion and invasion into extracellular matrix (ECM). In addition, phosphorylation of FAK correlates with the increase of cell motility and invasion. Adhesion and spreading of cancer cells on a variety of ECM proteins, including collagen type IV (Coll IV), leads to an increase in tyrosine phosphorylation and activation of FAK. In this study, we investigated the mechanism of activation of FAK and its downstream extracellular signal-regulated kinase (ERK)-1/2 signaling following stimulation by interleukin (IL)-1alpha and adhesion to ECM with subsequent enhancement of pancreatic cancer cell adhesion and invasion. In immunoblotting analysis, all three pancreatic cancer cell lines (AsPC-1, BxPC-3, and Capan-2) expressed the protein of FAK and beta1 integrin. Enhancement of FAK protein association with beta1 integrin when cells were plated on Coll IV was more increased by stimulation with IL-1alpha. Preincubation with anti-beta1 integrin antibody and FAK siRNA transfection inhibited the association of FAK with beta1 integrin of pancreatic cancer cells. FAK phosphorylation was observed by adhesion to Coll IV, furthermore, stronger FAK phosphorylation was observed by stimulation with IL-1alpha of pancreatic cancer cells adhered to Coll IV in time-dependent manner. Genistein, a tyrosine kinase inhibitor, markedly inhibited the FAK phosphorylation. IL-1alpha stimulation and Coll IV adhesion enhanced the activation of Ras, as evidenced by the increased Ras-GTP levels in pancreatic cancer cells. Activation of Ras correlated with the phosphorylation of ERK. While not statistical affecting the apoptosis of pancreatic cancer cells, IL-1alpha-induced adhesion and invasion on Coll IV were inhibited with FAK gene silencing by siRNA, beta1 integrin blocking, and inhibition of FAK phosphorylation. PD98059, a MEK inhibitor, also inhibited IL-1alpha-induced enhancement of adhesion and invasion in pancreatic cancer cells. Our results demonstrated that activation of FAK is involved with the aggressive capability in pancreatic cancer through Ras/ERK signaling pathway. Based on our results, we suggest that the modification of IL-1, FAK, and integrins functions might be a novel therapeutic approach to aggressive spread of pancreatic cancer.
    Molecular Cancer 02/2005; 4(1):37. DOI:10.1186/1476-4598-4-37 · 5.40 Impact Factor