Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX.

Department of Radiology, University of California San Francisco, UCSF Medical Center, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
Academic Radiology (Impact Factor: 2.08). 04/2005; 12(4):502-10. DOI: 10.1016/j.acra.2004.12.021
Source: PubMed

ABSTRACT To compare and optimize ferumoxides labeling of human hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking with a clinical 1.5 T MR scanner.
Human hematopoietic progenitor cells, derived from umbilical cord blood or peripheral blood, were labeled with Ferumoxides by simple incubation or lipofection. Cellular iron uptake was quantified with spectrometry. Then, 3 x 10(7)-labeled cells were injected into the tail vein of 12 female nude Balb/c mice. The mice underwent magnetic resonance imaging before and 24 hours after injection. Precontrast and postcontrast signal intensities of liver, spleen, and bone marrow were measured and tested for significant differences with the t-test. Immunostains served as a histopathologic standard of reference.
After labeling by simple incubation, only umbilical cord blood cells, but not peripheral blood cells, showed a significant iron uptake and could be tracked in vivo with magnetic resonance imaging. Using lipofection, both cell types could be tracked in vivo. A significant decline in signal intensity was observed in liver, spleen, and bone marrow at 24 hours after injection of efficiently labeled ferumoxides cells (P < .05). Histopathology proved the distribution of iron oxide-labeled cells to these organs.
Hematopoietic progenitor cells from umbilical cord blood can be labeled by simple incubation with an Food and Drug Administration-approved magnetic resonance contrast agent with sufficient efficiency to provide an in vivo cell tracking at 1.5 T. Progenitor cells from peripheral blood need to be labeled with adjunctive transfection techniques to be depicted in vivo at 1.5 T.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Success of immunotherapy with dendritic cells (DC) to treat cancer is highly dependent on their interaction with and activation of antigen specific T cells. To maximize DC-T cell contact accurate delivery of the therapeutic cells into the lymph node, or efficient trafficking of DC to the lymph nodes of the patient is essential. Since responses are seen in some patients but not in others, monitoring of the injected cells may be of major importance. Tracking of cells with magnetic resonance (MR) imaging is a non-invasive method that provides detailed anatomical information and is therefore more informative for the evaluation of the localization of therapeutic cells after injection than e.g. scintigraphic imaging. To challenge the sensitivity of this novel technique, we investigated the minimum amount of label and the number of cells required for MR imaging and the effect of labeling on DC function. DC were labeled with different concentrations of a clinically approved MR contrast agent consisting of superparamagnetic iron oxide particles and were imaged at both 3 and 7 T. Our results demonstrate the following: (i) When loaded with 30 (+/-4) pg Fe/cell, cell numbers as low as 1,000 cells/mm3 at 3 T and 500 cells/mm3 at 7 T could be readily imaged; (ii) Labeling does not affect cell viability and function; (iii) Because of its high spatial resolution and sensitivity, MRI is ideally suited to track therapeutic cells in vivo.
    International Journal of Cancer 03/2006; 120(5):978-84. DOI:10.1002/ijc.22385 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we evaluated the effects of intracellular compartmentalization of the ultrasmall superparamagnetic iron oxide (USPIO) ferumoxtran-10 on its proton T1 and T2 relaxivities at 1.5 and 3T. Monocytes were labeled with ferumoxtran-10 by simple incubation. Decreasing quantities of ferumoxtran-10-labeled cells (2.5x10(7)-0.3x10(7) cells/ml) and decreasing concentrations of free ferumoxtran-10 (without cells) in Ficoll solution were evaluated with 1.5 and 3T clinical magnetic resonance (MR) scanners. Pulse sequences comprised axial spin echo (SE) sequences with multiple TRs and fixed TE and SE sequences with fixed TR and increasing TEs. Signal intensity measurements were used to calculate T1 and T2 relaxation times of all samples, assuming a monoexponential signal decay. The iron content in all samples was determined by inductively coupled plasma atomic emission spectrometry and used for calculating relaxivities. Measurements at 1.5T and 3T showed higher T1 and T2 relaxivity values of free extracellular ferumoxtran-10 as opposed to intracellularly compartmentalized ferumoxtran-10, under the evaluated conditions of homogeneously dispersed contrast agents/cells in Ficoll solution and a cell density of up to 2.5x10(7) cells/ml. At 3T, differences in T1-relaxivities between intra- and extracellular USPIO were smaller, while differences in USPIO T2-relaxivities were similar compared with 1.5T. In conclusion, cellular compartmentalization of ferumoxtran-10 changes proton relaxivity.
    European Radiology 04/2006; 16(3):738-45. DOI:10.1007/s00330-005-0031-2 · 4.34 Impact Factor