Clinical utility of fluorescence in situ hybridization (FISH) in nonbrainstem glioblastomas of childhood

Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia.
Modern Pathology (Impact Factor: 6.19). 10/2005; 18(9):1258-63. DOI: 10.1038/modpathol.3800415
Source: PubMed


Astrocytic gliomas are the most common pediatric brain tumors; however, nonbrainstem glioblastomas are extremely rare compared with their adult counterparts. Little information is available on the clinical significance of various molecular markers in pediatric grade IV astrocytomas. The current study was focused on the molecular analysis and clinico-pathological correlations in a set of 44 tumor samples obtained from pediatric patients with nonbrainstem glioblastomas. Fluorescence in situ hybridization (FISH) with a set of 10 commercial chromosome probes (1p36, 1q25, centromere (CEP)7, EGFR, CEP9, 9p21/p16, CEP10, 10q23/PTEN, 19p13, and 19q13) was performed. Disclosed molecular abnormalities, in descending order of frequency, included polysomy 7 (72%), loss of 10q23 (61%), loss of 9p21 (52%), loss of 1p36 (41%), gain of 1q25 (25%), polysomy 9 (16%), EGFR amplification (9%), loss of 19q13 (5%), polysomy 19 (5%), and codeletion 1p36/19q13 (2%). The overall survival time was markedly shorter only for those patients whose lesions harbored deletion of 10q23/PTEN locus (log-rank test; P=0.00007). By multivariate analysis, only loss of 10q23 locus reached an independent level of prognostic value (hazard ratio=2.88; P=0.01). There were no significant differences in patient survival for other molecular abnormalities. In conclusion, a FISH analysis of 10q23 dosage should be recommended as an ancillary laboratory method that allows further clinical subdivision of pediatric glioblastomas.

Download full-text


Available from: Andrey Korshunov, Mar 25, 2014
28 Reads
  • Source
    • "Cell line/tumor type Targeted gene/band Method Reference Primary liver carcinomas 1q25 G-banded with Wright's stain Parada et al. (1998) Invasive breast cancers 1q arm Matrix-comparative genomic hybridization Stange et al. (2006) Childhood non-brainstem glioblastomas 1q25 FISH Korshunov et al. (2005) Pancreatic cancer 1q arm CGH Chang et al. (2005) Table 1 Gain in locus 19q13 in various cancer cell lines and tumors "
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic instabilities are believed to be one of the major causes of developing a cancer phenotype in humans. During the progression of cancer, aberrant expression of proteins, either owing to genetic (amplification, mutation and deletion) or epigenetic modifications (DNA methylation and histone deacetylation), contributes in different ways to the development of cancer. By differential screening analysis, an amplification of the 19q13 locus containing a novel pancreatic differentiation 2 (PD2) gene was identified. PD2 is the human homolog of the yeast RNA polymerase II-associated factor 1 (yPaf1) and is part of the human RNA polymerase II-associated factor (hPAF) complex. hPAF is comprised of five subunits that include PD2/hPaf1, parafibromin, hLeo1, hCtr9 and hSki8. This multifaceted complex was first identified in yeast (yPAF) and subsequently in Drosophila and human. Recent advances in the study on PAF have revealed various functions of the complex in human, which are similar to yPAF, including efficient transcription elongation, mRNA quality control and cell-cycle regulation. Although the precise function of this complex in cancer is not clearly known, some of its subunits have been linked to a malignant phenotype. Its core subunit, PD2/hPaf1, is amplified and overexpressed in many cancers. Further, an overexpression of PD2/hPaf1 results in the induction of a transformed phenotype, suggesting its possible involvement in tumorigenesis. The parafibromin subunit of the hPAF complex is a product of the HRPT-2 (hereditary hyperparathyroidism type 2) tumor suppressor gene, which is mutated in the germ line of hyperparathyroidism-jaw tumor patients. This review focuses on the functions of the PAF complex and its individual subunits, the interaction of the subunits with each other and/or with other molecules, and dysregulation of the complex, providing an insight into its potential involvement in the development of cancer.
    Oncogene 12/2007; 26(54):7499-507. DOI:10.1038/sj.onc.1210582 · 8.46 Impact Factor
  • Source
    • "Homozygous deletions of PTEN was identified by the simultaneous lack of both of the PTEN locus signals and by the presence of CEP 10 signals in 430% of cells ( Korshunov et al , 2005 ) . "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study examines the clinical impact of PTEN genomic deletions using fluorescence in situ hybridisation (FISH) analysis of 107 prostate cancers, with follow-up information covering a period of up to 10 years. Tissue microarray analysis using interphase FISH indicated that hemizygous PTEN losses were present in 42/107 (39%) of prostatic adenocarcinomas, with a homozygous PTEN deletion observed in 5/107 (5%) tumours. FISH analysis using closely linked probes centromeric and telomeric to the PTEN indicated that subband microdeletions accounted for approximately 70% genomic losses. Kaplan-Meier survival analysis of PTEN genomic losses (hemizygous and homozygous deletion vs not deleted) identified subgroups with different prognosis based on their time to biochemical relapse after surgery, and demonstrated significant association between PTEN deletion and an earlier onset of disease recurrence (as determined by prostate-specific antigen levels). Homozygous PTEN deletion was associated with a much earlier onset of biochemical recurrence (P=0.002). Furthermore, PTEN loss at the time of prostatectomy correlated with clinical parameters of more advanced disease, such as extraprostatic extension and seminal vesicle invasion. Collectively, our data indicates that haploinsufficiency or PTEN genomic loss is an indicator of more advanced disease at surgery, and is predictive of a shorter time to biochemical recurrence of disease.
    British Journal of Cancer 10/2007; 97(5):678-85. DOI:10.1038/sj.bjc.6603924 · 4.84 Impact Factor
  • Molecular Biology 04/2008; 42(2):335-338. DOI:10.1134/S0026893308020210 · 0.72 Impact Factor
Show more