A functional CD8+ cell assay reveals individual variation in CD8+ cell antiviral efficacy and explains differences in human T-lymphotropic virus type 1 proviral load.

Department of Immunology, Imperial College, London, UK.
Journal of General Virology (Impact Factor: 3.13). 06/2005; 86(Pt 5):1515-23. DOI: 10.1099/vir.0.80766-0
Source: PubMed

ABSTRACT The CD8+ lymphocyte response is a main component of host immunity, yet it is difficult to quantify its contribution to the control of persistent viruses. Consequently, it remains controversial as to whether CD8+ cells have a biologically significant impact on viral burden and disease progression in infections such as human immunodeficiency virus-1 and human T-lymphotropic virus type I (HTLV-I). Experiments to ascertain the impact of CD8+ cells on viral burden based on CD8+ cell frequency or specificity alone give inconsistent results. Here, an alternative approach was developed that directly quantifies the impact of CD8+ lymphocytes on HTLV-I proviral burden by measuring the rate at which HTLV-I-infected CD4+ cells were cleared by autologous CD8+ cells ex vivo. It was demonstrated that CD8+ cells reduced the lifespan of infected CD4+ cells to 1 day, considerably shorter than the 30 day lifespan of uninfected cells in vivo. Furthermore, it was shown that HTLV-I-infected individuals vary considerably in the rate at which their CD8+ cells clear infected cells, and that this was a significant predictor of their HTLV-I proviral load. Forty to 50 % of between-individual variation in HTLV-I proviral load was explained by variation in the rate at which CD8+ cells cleared infected cells. This novel approach demonstrates that CD8+ cells are a major determinant of HTLV-I proviral load. This assay is applicable to quantifying the CD8+ cell response to other viruses and malignancies and may be of particular importance in assessing vaccines.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The CD8+ cytotoxic T lymphocyte (CTL) response is an important defence against viral invasion. Although CTL-mediated cytotoxicity has been widely studied for many years, the rate at which virus-infected cells are killed in vivo by the CTL response is poorly understood. To date the rate of CTL killing in vivo has been estimated for three virus infections but the estimates differ considerably, and killing of HIV-1-infected cells was unexpectedly low. This raises questions about the typical anti-viral capability of CTL and whether CTL killing is abnormally low in HIV-1. We estimated the rate of killing of infected cells by CD8+ T cells in two distinct persistent virus infections: sheep infected with Bovine Leukemia Virus (BLV) and humans infected with Human T Lymphotropic Virus type 1 (HTLV-1) which together with existing data allows us to study a total of five viruses in parallel. Although both BLV and HTLV-1 infection are characterised by large expansions of chronically activated CTL with immediate effector function ex vivo and no evidence of overt immune suppression, our estimates are at the lower end of the reported range. This enables us to put current estimates into perspective and shows that CTL killing of HIV-infected cells may not be atypically low. The estimates at the higher end of the range are obtained in more manipulated systems and may thus represent the potential rather than the realised CTL efficiency.
    PLoS Computational Biology 04/2014; 10(4):e1003534. · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HTLV-1 causes proliferation of clonal populations of infected T cells in vivo, each clone defined by a unique proviral integration site in the host genome. The proviral load is strongly correlated with odds of the inflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is evidence that asymptomatic HTLV-1 carriers (ACs) have a more effective CD8 + T cell response, including a higher frequency of HLA class I alleles able to present peptides from a regulatory protein of HTLV-1, HBZ. We have previously shown that specific features of the host genome flanking the proviral integration site favour clone survival and spontaneous expression of the viral transactivator protein Tax in naturally infected PBMCs ex vivo. However, the previous studies were not designed or powered to detect differences in integration site characteristics between ACs and HAM/TSP patients. Here, we tested the hypothesis that the genomic environment of the provirus differs systematically between ACs and HAM/TSP patients, and between individuals with strong or weak HBZ presentation.
    Virology journal. 09/2014; 11(1):172.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HTLV-1 proviral loads (PVLs) and some genetic factors are reported to be associated with the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). However, there are very few reports on HAM/TSP having family history. We aimed to define the clinical features and laboratory indications associated with HAM/TSP having family history. Records of 784 HAM/TSP patients who were hospitalized in Kagoshima University Hospital and related hospitals from 1987 to 2012 were reviewed. Using an unmatched case-control design, 40 patients of HAM/TSP having family history (f-HAM/TSP) were compared with 124 patients suffering from sporadic HAM/TSP, who were admitted in series over the last 10 years for associated clinical features. Of the 784 patients, 40 (5.1%) were f-HAM/TSP cases. Compared with sporadic cases, the age of onset was earlier (41.3 vs. 51.6 years, p<0.001), motor disability grades were lower (4.0 vs. 4.9, p = 0.043) despite longer duration of illness (14.3 vs. 10.2 years, p = 0.026), time elapsed between onset and wheelchair use in daily life was longer (18.3 vs. 10.0 years, p = 0.025), cases with rapid disease progression were fewer (10.0% vs. 28.2%, p = 0.019), and protein levels in cerebrospinal fluid (CSF) were significantly lower in f-HAM/TSP cases (29.9 vs. 42.5 mg, p<0.001). There was no difference in HTLV-1 PVLs, anti-HTLV-1 antibody titers in serum and CSF, or cell number and neopterin levels in CSF. Furthermore, HTLV-1 PVLs were lower in cases with rapid disease progression than in those with slow progression in both f-HAM/TSP and sporadic cases. We demonstrated that HAM/TSP aggregates in the family, with a younger age of onset and a slow rate of progression in f-HAM/TSP cases compared with sporadic cases. These data also suggested that factors other than HTLV-1 PVLs contribute to the disease course of HAM/TSP.
    PLoS ONE 01/2014; 9(5):e86144. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 26, 2014