Article

Array comparative genomic hybridization identifies genetic subgroups in grade 4 human astrocytoma.

Brain Tumor Research Center, Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA.
Clinical Cancer Research (Impact Factor: 8.19). 05/2005; 11(8):2907-18. DOI: 10.1158/1078-0432.CCR-04-0708
Source: PubMed

ABSTRACT Alterations of DNA copy number are believed to be important indicators of tumor progression in human astrocytoma. We used an array of bacterial artificial chromosomes to map relative DNA copy number in 50 primary glioblastoma multiforme tumors at approximately 1.4-Mb resolution. We identified 33 candidate sites for amplification and homozygous deletion in these tumors. We identified three major genetic subgroups within these glioblastoma multiforme tumors: tumors with chromosome 7 gain and chromosome 10 loss, tumors with only chromosome 10 loss in the absence of chromosome 7 gain, and tumors without copy number change in chromosomes 7 or 10. The significance of these genetic groups to therapeutics needs further study.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular signatures in Glioblastoma (GBM) have been described that correlate with clinical outcome and response to therapy. The Proneural (PN) and Mesenchymal (MES) signatures have been identified most consistently, but others including Classical (CLAS) have also been reported. The molecular signatures have been detected by array techniques at RNA and DNA level, but these methods are costly and cannot take into account individual contributions of different cells within a tumor. Therefore, the aim of this study was to investigate whether subclasses of newly diagnosed GBMs could be assessed and assigned by application of standard pathology laboratory procedures. 123 newly diagnosed GBMs were analyzed for the tumor cell expression of 23 pre-identified proteins and EGFR amplification, together allowing for the subclassification of 65% of the tumors. Immunohistochemistry (IHC)-based profiling was found to be analogous to transcription-based profiling using a 9-gene transcriptional signature for PN and MES subclasses. Based on these data a novel, minimal IHC-based scheme for subclass assignment for GBMs is proposed. Positive staining for IDH1R132H can be used for PN subclass assignment, high EGFR expression for the CLAS subtype and a combined high expression of PTEN, VIM and/or YKL40 for the MES subclass. The application of the proposed scheme was evaluated in an independent tumor set, which resulted in similar subclass assignment rates as those observed in the training set. The IHC-based subclassification scheme proposed in this study therefore could provide very useful in future studies for stratification of individual patient samples.
    PLoS ONE 12/2014; 9(12):e115687. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytogenetics is the branch of genetics that studies the cell activity focusing mainly on the chromosome structure, organization and function, isolated or as the whole karyotype, in order to understand aspects of cell biology, evolution or implicated diseases. The behavior of DNA and genes is greatly constrained by the fact that they are incorporated into chromosomes. The DNA is associated with proteins that control and catalyze the processes of transcription and replication. Gene expression is controlled by modifications in histones and by chromatin remodeling complexes. It can also be influenced by the position of the gene in the chromosome. Hence, errors in chromosome behavior are an important cause of ill-health. The presence of chromosomal abnormalities is usual in cancer, and specific chromosome abnormality may often be one of the first events in the development of cancer. The importance of cytogenetic analysis in oncology is demonstrated by the number of researches made on this area since the discovery of the Philadelphia chromosome, a 9/22 translocation, which is seen in chronic myelogenous leukemia (CML) patients. The focus of these studies is the relation between specific chromosome alterations to prognosis, drug resistance and diagnosis for some tumors entities. Moreover, DNA repair problems and others genomic stability pathways defects may lead to genome-wide genetic instability, which can drive further cancer progression. Although chromosome rearrangements are mainly used as markers in hematologic cancers, these alterations have been increasingly studied in solid tumors (90% of all human malignancies), showing that chromosomal numerical/structural aberrations are common in this kind of neoplasia.
    Clinical Management and Evolving Novel Therapeutic Strategies for Patients with Brain Tumors, 1 edited by Terry Lichtor, 01/2013: chapter 17: pages 357-388; InTech., ISBN: 978-953-51-1058-3
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activity of GFR/PI3K/AKT pathway inhibitors in glioblastoma clinical trials has not been robust. We hypothesized variations in the pathway between tumors contribute to poor response. We clustered GBM based on AKT pathway genes and discovered new subtypes then characterized their clinical and molecular features. There are at least 5 GBM AKT subtypes having distinct DNA copy number alterations, enrichment in oncogenes and tumor suppressor genes and patterns of expression for PI3K/AKT/mTOR signaling components. Gene Ontology terms indicate a different cell of origin or dominant phenotype for each subgroup. Evidence suggests one subtype is very sensitive to BCNU or CCNU (median survival 5.8 vs. 1.5 years; BCNU/CCNU vs other treatments; respectively). AKT subtyping advances previous approaches by revealing additional subgroups with unique clinical and molecular features. Evidence indicates it is a predictive marker for response to BCNU or CCNU and PI3K/AKT/mTOR pathway inhibitors. We anticipate Akt subtyping may help stratify patients for clinical trials and augment discovery of class-specific therapeutic targets.
    PLoS ONE 07/2014; 9(7):e100827. · 3.53 Impact Factor