Renal cell-expressed TNF receptor 2, not receptor 1, is essential for the development of glomerulonephritis.

Center of Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
Journal of Clinical Investigation (Impact Factor: 13.77). 06/2005; 115(5):1199-209. DOI: 10.1172/JCI23348
Source: PubMed

ABSTRACT TNF is essential for the development of glomerulonephritis, an immune-mediated disorder that is a major cause of renal failure worldwide. However, TNF has proinflammatory and immunosuppressive properties that may segregate at the level of the 2 TNF receptors (TNFRs), TNFR1 and TNFR2. TNFR1-deficient mice subjected to immune complex-mediated glomerulonephritis developed less proteinuria and glomerular injury, and fewer renal leukocyte infiltrates at early time points after disease induction, and this was associated with a reduced systemic immune response to nephrotoxic rabbit IgG. However, proteinuria and renal pathology were similar to those in wild-type controls at later time points, when lack of TNFR1 resulted in excessive renal T cell accumulation and an associated reduction in apoptosis of these cells. In sharp contrast, TNFR2-deficient mice were completely protected from glomerulonephritis at all time points, despite an intact systemic immune response. TNFR2 was induced on glomerular endothelial cells of nephritic kidneys, and TNFR2 expression on intrinsic cells, but not leukocytes, was essential for glomerulonephritis and glomerular complement deposition. Thus, TNFR1 promotes systemic immune responses and renal T cell death, while intrinsic cell TNFR2 plays a critical role in complement-dependent tissue injury. Therefore, therapeutic blockade specifically of TNFR2 may be a promising strategy in the treatment of immune-mediated glomerulonephritis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In Caucasians with type 2 diabetes, circulating TNF receptors 1 (TNFR1) and 2 (TNFR2) predict end-stage renal disease (ESRD). Here we examined this relationship in a longitudinal cohort study of American Indians with type 2 diabetes with measured glomerular filtration rate (mGFR, iothalamate) and urinary albumin-to-creatinine ratio (ACR). ESRD was defined as dialysis, kidney transplant, or death attributed to diabetic kidney disease. Age-gender-adjusted incidence rates and incidence rate ratios of ESRD were computed by Mantel-Haenszel stratification. The hazard ratio of ESRD was assessed per interquartile range increase in the distribution of each TNFR after adjusting for baseline age, gender, mean blood pressure, HbA1c, ACR, and mGFR. Among the 193 participants, 62 developed ESRD and 25 died without ESRD during a median follow-up of 9.5 years. The age-gender-adjusted incidence rate ratio of ESRD was higher among participants in the highest versus lowest quartile for TNFR1 (6.6, 95% confidence interval (CI) 3.3-13.3) or TNFR2 (8.8, 95% CI 4.3-18.0). In the fully adjusted model, the risk of ESRD per interquartile range increase was 1.6 times (95% CI 1.1-2.2) as high for TNFR1 and 1.7 times (95% CI 1.2-2.3) as high for TNFR2. Thus, elevated serum concentrations of TNFR1 or TNFR2 are associated with increased risk of ESRD in American Indians with type 2 diabetes after accounting for traditional risk factors including ACR and mGFR.Kidney International advance online publication, 1 October 2014; doi:10.1038/ki.2014.330.
    Kidney International 10/2014; 87(4). DOI:10.1038/ki.2014.330 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor necrosis factor (TNF), initially reported to induce tumor cell apoptosis and cachexia, is now considered a central mediator of a broad range of biological activities from cell proliferation, cell death and differentiation to induction of inflammation and immune modulation. TNF exerts its biological responses via interaction with two cell surface receptors: TNFR1 and TNFR2. (TNFRs). These receptors trigger shared and distinct signaling pathways upon TNF binding, which in turn result in cellular outputs that may promote tissue injury on one hand but may also induce protective, beneficial responses. Yet the role of TNF and its receptors specifically in renal disease is still not well understood. This review describes the expression of the TNFRs, the signaling pathways induced by them and the biological responses of TNF and its receptors in various animal models of renal diseases, and discusses the current outcomes from use of TNF biologics and TNF biomarkers in renal disorders.Kidney International advance online publication, 20 August 2014; doi:10.1038/ki.2014.285.
    Kidney International 08/2014; DOI:10.1038/ki.2014.285 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes mellitus entails significant health problems worldwide. The pathogenesis of diabetes is multifactorial, resulting from interactions of both genetic and environmental factors that trigger a complex network of pathophysiological events, with metabolic and hemodynamic alterations. In this context, inflammation has emerged as a key pathophysiology mechanism. New pathogenic pathways will provide targets for prevention or future treatments. This review will focus on the implications of inflammation in diabetes mellitus, with special attention to inflammatory cytokines.

Full-text (2 Sources)

Available from
Jun 10, 2014