Article

Hydrolethalus syndrome is caused by a missense mutation in a novel gene HYLS1.

Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
Human Molecular Genetics (Impact Factor: 6.68). 07/2005; 14(11):1475-88. DOI: 10.1093/hmg/ddi157
Source: PubMed

ABSTRACT Hydrolethalus syndrome (HLS) is an autosomal recessive lethal malformation syndrome characterized by multiple developmental defects of fetus. We have earlier mapped and restricted the HLS region to a critical 1 cM interval on 11q23-25. The linkage disequilibrium (LD) and haplotype analyses of single nucleotide polymorphism (SNP) markers helped to further restrict the HLS locus to 476 kb between genes PKNOX2 and DDX25. An HLS associated mutation was identified in a novel regional transcript (GenBank accession no. FLJ32915), referred to here as the HYLS1 gene. The identified A to G transition results in a D211G change in the 299 amino acid polypeptide with unknown function. The HYLS1 gene shows alternative splicing and the transcript is found in multiple tissues during fetal development. In situ hybridization shows spatial and temporal distributions of transcripts in good agreement with the tissue phenotype of HLS patients. Immunostaining of in vitro expressed polypeptides from wild-type (WT) cDNA revealed cytoplasmic staining, whereas mutant polypeptides became localized in distinct nuclear structures, implying a disturbed cellular localization of the mutant protein. The Drosophila melanogaster model confirmed these findings and provides evidence for the significance of the mutation both in vitro and in vivo.

Download full-text

Full-text

Available from: George Jackson, Jun 18, 2015
0 Followers
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meckel syndrome (MKS, MIM 249000) is an autosomal recessive developmental disorder causing death in utero or shortly after birth. The hallmarks of the disease are cystic kidney dysplasia and fibrotic changes of the liver, occipital encephalocele with or without hydrocephalus and polydactyly. Other anomalies frequently seen in the patients are incomplete development of the male genitalia, club feet and cleft lip or palate. The clinical picture has been well characterized in the literature while the molecular pathology underlying the disease has remained unclear until now. In this study we identified the first MKS gene by utilizing the disease haplotypes in Finnish MKS families linked to the MKS1 locus on chromosome 17q23 (MKS1) locus. Subsequently, the genetic heterogeneity of MKS was established in the Finnish families. Mutations in at least four different genes can cause MKS. These genes have been mapped to the chromosomes 17q23 (MKS1), 11q13 (MKS2), 8q22 (MKS3) and 9q33 (MKS4). Two of these genes have been identified so far: The MKS1 gene (this work) and the MKS3 gene. The identified MKS1 gene was initially a novel human gene which is conserved among species. We found three different MKS mutations, one of them being the Finnish founder mutation. The information available from MKS1 orthologs in other species convinced us that the MKS1 gene is required for normal ciliogenesis. Defects of the cilial system in other human diseases and model organisms actually cause phenotypic features similar to those seen in MKS patients. The MKS3 (TMEM67) gene encodes a transmembrane protein and the gene maps to the syntenic Wpk locus in the rat, which is a model with polycystic kidney disease, agenesis of the corpus callosum and hydrocephalus. The available information from these two genes suggest that MKS1 would encode a structural component of the centriole required for normal ciliary functions, and MKS3 would be a transmembrane component most likely required for normal ciliary sensory signaling. The MKS4 locus was localized to chromosme 9q32-33 in this study by using an inbred Finnish family with two affected and two healthy children. This fourth locus contains TRIM32 gene, which is associated to another well characterized human ciliopathy, Bardet Biedl syndrome (BBS). Future studies should identify the MKS4 gene on chromosome 9q and confirm if there are more than two genes causing MKS Finnish families. The research on critical signaling pathways in organogenesis have shown that both Wnt and Hedgehog pathways are dependent on functional cilia. The MKS gene products will serve as excellent model molecules for more detailed studies of the functional role of cilia in organogenesis in more detail. Meckelin oireyhtymä on sikiön vakava kehityshäiriö, joka johtaa kuolemaan joko sikiövaiheessa tai heti syntymän jälkeen. Taudin keskeisimmät oireet ovat suuret rakkulaiset munuaiset, jotka esiintyvät aina yhdessä maksan kudosmuutosten kanssa, sekä keskushermostoputken sulkeutumishäiriö. Näiden oireiden kanssa tavataan melkein aina pikkusormen/-varpaan puolella ylimääräinen sormi/varvas. Useimmiten sikiön sairaus todetaan alkuraskauden ultraäänitutkimuksessa; Suomessa vuosittain 5-7 raskaudessa. Vaikka oireyhtymä kuuluu nk. Suomalaisen tautiperinnön tauteihin, sitä tavataan maailmanlaajuisesti. Meckelin oireyhtymä on väistyvästi periytyvä, mikä tarkoittaa että sairastuakseen sikiön täytyy periä virheellinen geeni molemmilta vanhemmilta. Tauti voi aiheutua useamman eri geenin virheistä, joita toistaiseksi tiedetään olevan ainakin neljä. Väitöskirjatyössä tunnistettu kromosomin 17 pitkän käsivarren MKS1-geenin virhe aiheuttaa taudin valtaosalla suomalaisista MKS- perheistä (70 %). Kaikissa suomalaisissa perheissä sairaat olivat perineet molemmilta vanhemmiltaan saman geenivirheen. Löysimme tämän saman geenivirheen ei-suomalaisista MKS-perheissä, jotka edustavat muita eurooppalaisia väestöjä, eli kyseessä on historiallisesti suhteellisen aikaisin ihmiskunnan perimään sattunut geenivirhe, jonka kantasuomalaiset ovat tuoneet perimässään muuttaessaan Euroopan raja-alueelle. Tulokset tarjoavat diagnostisen DNA-testin sairaudelle ja mahdollistavat myös geenivirheen kantajien tunnistamisen. MKS1-geenilöydös on myös solutasolla erittäin mielenkiintoinen, sillä sen virhe johtaa vialliseen solun pinnan värekarvarakenteeseen (cilia), joka aistii solun ympäristöä. Tästä seuraa vakava häiriö varhaisalkion solujen välisessä kommunikaatiossa. Värekarvarakenteiden vikoja on löydetty myös muissa ihmisen perinnöllisissä sairauksissa, joissa esiintyy samankaltaisia oireita. Meckelin oireyhtymä on kuitenkin näistä sairauksista vakavin ja osoittaa ensimmäistä kertaa miten solujen pienet aistinantennit ovat välttämättömiä normaalille sikiöajan kehitykselle. Väitöskirjatyössä tehty geenilöydös auttaa selvittämään muitakin solun aistinantenneja vaurioittavia tapahtumia, jotka häiritsevät sikiöajan kehitystä. Meckel-geenin toiminnan tutkiminen tuo siten myös uutta ymmärrystä ihmisen varhaisvaiheen kehitykseen yleisemminkin. Lisäksi tässä väitöskirjatyössä tunnistettiin neljännen MKS-geenin paikka perimässä kromosomissa 9q (MKS4). Neljäs perimän MKS-geenipaikka, eli nk. MKS4-lokus löydettiin suomalaisen perheen koko genomin kartoituksessa. Tässä perheessä on kaksi tervettä ja kaksi sairasta lasta. Sukututkimuksen pohjalta tiesimme, että perheen isovanhemmat olivat mitä ilmeisimmin kaukaisesti sukua toisilleen, joten oli hyvin todennäköistä, että sairaat lapset olivat perineet saman geenivirheen molemmilta vanhemmilta. Tietoisuus siitä, että MKS voi aiheutua Suomessa ainakin kahden geenin virheestä on tärkeää. MKS:ää ei voida parantaa, mikä korostaa perinnöllisyysneuvonnan merkitystä perheissä, joissa tautia tavataan.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lactase non-persistence (adult-type hypolactasia) is present in more than half of the human population and is caused by the down-regulation of lactase enzyme activity during childhood. Congenital lactase deficiency (CLD) is a rare severe gastrointestinal disorder of new-borns enriched in the Finnish population. Both lactase deficiencies are autosomal recessive traits and characterized by diminished expression of lactase activity in the intestine. Genetic variants underlying both forms have been identified. Here we review the current understanding of the molecular defects of human lactase deficiencies and their phenotype-genotype correlation, the implications on clinical practice, and the understanding of their function and role in human evolution.
    Annals of Medicine 08/2009; 41(8):568-75. DOI:10.1080/07853890903121033 · 4.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cumulative data obtained from two relatively large pedigrees of a unique reciprocal chromosomal translocation (RCT) t(1;11)(p36.22;q12.2) ascertained by three miscarriages (pedigree 1) and the birth of newborn with hydrocephalus and myelomeningocele (pedigree 2) were used to estimate recurrence risks for different pregnancy outcomes. Submicroscopic molecular characterization by fluorescent in situ hybridization (FISH) of RCT break points in representative carriers showed similar rearrangements in both families. Meiotic segregation patterns after sperm analysis by three-color FISH of one male carrier showed all possible outcomes resulting from 2:2 and 3:1 segregations. On the basis of empirical survival data, we suggest that only one form of chromosome imbalance resulting in monosomy 1p36.22pter with trisomy 11q12.2qter may be observed in progeny at birth. Segregation analysis of these pedigrees was performed by the indirect method of Stengel-Rutkowski and showed that probability rate for malformed child at birth due to an unbalanced karyotype was 3/48 (6.2±3.5%) after ascertainment correction. The risk for stillbirths/early neonatal deaths was -/48 (<1.1%) and for miscarriages was 17/48 (35.4±6.9%). However, the probability rate for children with a normal phenotype at birth was 28/48 (58.3±7.1%). The results obtained from this study may be used to determine the risks for the various pregnancy outcomes for carriers of t(1;11)(p36.22;q12.2) and can be used for genetic counseling of carriers of this rearrangement.Journal of Human Genetics advance online publication, 16 October 2014; doi:10.1038/jhg.2014.92.
    Journal of Human Genetics 10/2014; 59(12):667–674. DOI:10.1038/jhg.2014.92 · 2.53 Impact Factor