Article

Vav Family GEFs Link Activated Ephs to Endocytosis and Axon Guidance

Neurobiology Program, Children's Hospital, Boston, Massachusetts 02115, USA.
Neuron (Impact Factor: 15.98). 05/2005; 46(2):205-17. DOI: 10.1016/j.neuron.2005.03.019
Source: PubMed

ABSTRACT Ephrin signaling through Eph receptor tyrosine kinases can promote attraction or repulsion of axonal growth cones during development. However, the mechanisms that determine whether Eph signaling promotes attraction or repulsion are not known. We show here that the Rho family GEF Vav2 plays a key role in this process. We find that, during axon guidance, ephrin binding to Ephs triggers Vav-dependent endocytosis of the ligand-receptor complex, thus converting an initially adhesive interaction into a repulsive event. In the absence of Vav proteins, ephrin-Eph endocytosis is blocked, leading to defects in growth cone collapse in vitro and significant defects in the ipsilateral retinogeniculate projections in vivo. These findings suggest an important role for Vav family GEFs as regulators of ligand-receptor endocytosis and determinants of repulsive signaling during axon guidance.

Download full-text

Full-text

Available from: Michael Z Lin, Jul 04, 2015
0 Followers
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endocytosis is the major regulator of signaling from receptor tyrosine kinases (RTKs). The canonical model of RTK endocytosis involves rapid internalization of an RTK activated by ligand binding at the cell surface and subsequent sorting of internalized ligand-RTK complexes to lysosomes for degradation. Activation of the intrinsic tyrosine kinase activity of RTKs results in autophosphorylation, which is mechanistically coupled to the recruitment of adaptor proteins and conjugation of ubiquitin to RTKs. Ubiquitination serves to mediate interactions of RTKs with sorting machineries both at the cell surface and on endosomes. The pathways and kinetics of RTK endocytic trafficking, molecular mechanisms underlying sorting processes, and examples of deviations from the standard trafficking itinerary in the RTK family are discussed in this work.
    Cold Spring Harbor perspectives in biology 05/2013; 5(5). DOI:10.1101/cshperspect.a017459 · 8.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The highly dynamic remodeling and cross talk of the microtubule and actin cytoskeleton support neuronal morphogenesis. Small RhoGTPases family members have emerged as crucial regulators of cytoskeletal dynamics. In this review we will comprehensively analyze findings that support the participation of RhoA, Rac, Cdc42, and TC10 in different neuronal morphogenetic events ranging from migration to synaptic plasticity. We will specifically address the contribution of these GTPases to support neuronal polarity and axonal elongation.
    Cytoskeleton 07/2012; 69(7):464-85. DOI:10.1002/cm.21034 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin remodeling by histone deacetylases (HDACs) is a key mechanism regulating behavioral adaptations to cocaine use. We report here that cocaine and cyclic adenosine monophosphate (cAMP) signaling induce the transient nuclear accumulation of HDAC5 in rodent striatum. We show that cAMP-stimulated nuclear import of HDAC5 requires a signaling mechanism that involves transient, protein phosphatase 2A (PP2A)-dependent dephosphorylation of a Cdk5 site (S279) found within the HDAC5 nuclear localization sequence. Dephosphorylation of HDAC5 increases its nuclear accumulation, by accelerating its nuclear import rate and reducing its nuclear export rate. Importantly, we show that dephosphorylation of HDAC5 S279 in the nucleus accumbens suppresses the development, but not expression, of cocaine reward behavior in vivo. Together, our findings reveal a molecular mechanism by which cocaine regulates HDAC5 function to antagonize the rewarding impact of cocaine, likely by putting a brake on drug-stimulated gene expression that supports drug-induced behavioral changes.
    Neuron 01/2012; 73(1):108-20. DOI:10.1016/j.neuron.2011.10.032 · 15.98 Impact Factor