Article

Rise in insulin resistance is associated with escalated telomere attrition.

Hypertension Research Center, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.
Circulation (Impact Factor: 14.95). 06/2005; 111(17):2171-7. DOI: 10.1161/01.CIR.0000163550.70487.0B
Source: PubMed

ABSTRACT Insulin resistance predisposes to cardiovascular disease and shortens human lifespan. We therefore tested the hypothesis that a rise in insulin resistance in concert with gain in body mass is associated with accelerated white blood cell telomere attrition.
We measured white blood cell telomere dynamics and age-related changes in insulin resistance and body mass index in young adults of the Bogalusa Heart Study. Over 10.1 to 12.8 years, the relative changes in telomere length were correlated with the homeostasis model assessment of insulin resistance (r=-0.531, P<0.001) and changes in the body mass index (r=-0.423, P<0.001).
These findings provide the first tangible nexus of telomere biology with insulin resistance and adiposity in humans.

0 Followers
 · 
80 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence assembled over the last decade shows that average telomere length (TL) acts as a biomarker for biological aging and cardiovascular disease (CVD) in particular. Although essential for a more profound understanding of the underlying mechanisms, little reference information is available on TL. We therefore sought to provide baseline TL information and assess the association of prevalent CVD risk factors with TL in subjects free of overt CVD within a small age range. We measured mean telomere restriction fragment length of peripheral blood leukocytes in a large, representative Asklepios study cohort of 2509 community-dwelling, Caucasian female and male volunteers aged approximately 35-55 years and free of overt CVD. We found a manifest age-dependent telomere attrition, at a significantly faster rate in men as compared to women. No significant associations were established with classical CVD risk factors such as cholesterol status and blood pressure, yet shorter TL was associated with increased levels of several inflammation and oxidative stress markers. Importantly, shorter telomere length was associated with an increasingly unhealthy lifestyle, particularly in men. All findings were age and gender adjusted where appropriate. With these cross-sectional results we show that TL of peripheral blood leukocytes primarily reflects the burden of increased oxidative stress and inflammation, whether or not determined by an increasingly unhealthy lifestyle, while the association with classical CVD risk factors is limited. This further clarifies the added value of TL as a biomarker for biological aging and might improve our understanding of how TL is associated with CVD.
    Aging Cell 11/2007; 6(5):639-47. DOI:10.1111/j.1474-9726.2007.00321.x · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomeres are DNA-protein complexes at the ends of chromosomes that control genomic integrity but appear to become shorter with age and stress. To test whether stress causes telomere attrition, we exposed the offspring of wild-caught house mice (Mus musculus) to stressful conditions and examined the changes in telomere length over six months. We found that females exposed to males and reproductive stress (either with or without crowding) had significantly shorter telomeres than controls, and males exposed to crowding stress had shorter telomeres than males that were not crowded. Our results indicate that stress alters telomere dynamics, causing attrition and hindering restoration, and these effects are sex dependent. Telomeres may thus provide a biomarker for assessing an individual's cumulative exposure or ability to cope with stressful conditions.
    Biology letters 05/2007; 3(2):128-30. DOI:10.1098/rsbl.2006.0594 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low socio-economic status (SES) is associated with a shortened life expectancy, but its effect on aging is unknown. The rate of white-blood-cell (WBC) telomere attrition may be a biological indicator of human aging. We tested the hypothesis that SES is associated with telomere attrition independent of known risk factors influencing the aging process. We studied 1552 female twins. A venous blood sample was taken from each twin and isolated WBCs used for extraction of DNA. Terminal restriction fragment length (TRFL) was measured. Questionnaire data were collected on occupation, education, income, smoking, exercise, height and weight. Standard multiple linear regression and multivariate analyses of variance tested for associations between SES and TRFL, adjusting for covariates. A discordant twin analysis was conducted on a subset to verify findings. WBC telomere length was highly variable but significantly shorter in lower SES groups. The mean difference in TRFL between nonmanual and manual SES groups was 163.2 base pairs (bp) of which 22.9 bp (approximately 14%) was accounted for by body mass index, smoking and exercise. Comparison of TRFL in the 17 most discordant SES twin pairs confirmed this difference. Low SES, in addition to the harmful effects of smoking, obesity and lack of exercise, appears to have an impact on telomere length.
    Aging Cell 11/2006; 5(5):361-5. DOI:10.1111/j.1474-9726.2006.00222.x · 5.94 Impact Factor