Article

Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks.

Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-6838, USA.
Oncogene (Impact Factor: 8.56). 08/2005; 24(32):5053-68. DOI: 10.1038/sj.onc.1208685
Source: PubMed

ABSTRACT Stromal fibroblasts regulate epithelial cell behavior through direct and indirect cell-cell interactions. To clarify the role of TGF-beta signaling in stromal fibroblasts during mammary development and tumorigenesis, we conditionally knocked out the TGF-beta type II receptor gene in mouse mammary fibroblasts (Tgfbr2(fspKO)). Tgfbr2(fspKO) mice exhibit defective mammary ductal development, characterized in part by increased ductal epithelial cell turnover associated with an increase in stromal fibroblast abundance. Tgfbr2(fspKO) mammary fibroblasts transplanted with mammary carcinoma cells promote growth and invasion, which is associated with increased activating phosphorylation of the receptors: erbB1, erbB2, RON, and c-Met. Furthermore, the increased receptor phosphorylation correlates with increased secretion of the cognate ligands by Tgfbr2(fspKO) fibroblasts. Treatment of tumor cells with fibroblast-conditioned medium leads to increased tumor cell proliferation and motility, which are blocked by addition of pharmacologic inhibitors of TGF-alpha signaling or neutralizing antibodies to macrophage-stimulating protein (MSP), HGF, or c-Met. These studies characterize a significant role for stromal TGF-beta signaling in mammary tissue homeostasis and mammary tumor progression via regulation of TGF-alpha, MSP, and HGF signaling pathways.

0 Followers
 · 
75 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor-beta-induced (TGFBI) serves as a linker protein and plays a role in the activation of morphogenesis, cell proliferation, adhesion, migration, differentiation and inflammation. High expression levels of the human TGFBI gene are correlated with numerous human malignancies. In order to explore the roles of TGFBI in the tumor progression of colorectal cancer, colorectal cancer specimens from 115 patients with strict follow-up were selected for the analysis of TGFBI by immunohistochemistry. The correlations between TGFBI expression and the clinicopathological features of colorectal cancers were evaluated. In the colorectal cancer tissues, TGFBI was mainly localized in the cytoplasm and stroma and scarcely in the nucleus. TGFBI expression in the cytoplasm and stroma was not found to be associated with age, gender, tumor histopathological grading, PT category and tumor location (P > 0.05 for each). However, high TGFBI expression in the cytoplasm and stroma correlated with lymph node metastasis, distant metastasis and Dukes stage (P < 0.05 for each). The survival rate was significantly lower in patients with high TGFBI expression than in those with low TGFBI expression. Furthermore, we found that tumor node metastasis (TNM) staging (HR: 2.963; 95% CI: 1.573-1.664; P = 0.000), differentiation (HR: 1.574; 95% CI: 1.001-2.476; P = 0.049) and high TGFBI cytoplasmic expression (HR: 3.332; 95% CI: 1.410-7.873; P = 0.000) proved to be independent prognostic factors for survival in colorectal cancer. In conclusion, TGFBI plays an important role in the progression of colorectal cancers and it is an independent poor prognostic factor for colorectal cancer patients.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While overexpression of TGFα has been reported in human pancreatic ductal adenocarcinoma (PDAC), mice with overexpressed TGFα develop premalignant pancreatic acinar-to-ductal metaplasia (ADM) but not PDAC. TGF-β signaling pathway is pivotal to the development of PDAC and tissue fibrosis. Here we sought to investigate the interplay between TGFα and TGF-β signaling in pancreatic tumorigenesis and fibrosis, namely via Smad4 inactivation. The MT-TGFα mouse was crossed with a new Smad4 conditional knock-out mouse (Smad4flox/flox;p48-Cre or S4) to generate Smad4flox/flox;MT-TGFα;p48-Cre (STP). After TGFα overexpression was induced with zinc sulfate water for eight months, the pancreata of the STP, MT-TGFα, and S4 mice were examined for tumor development and fibrotic responses. PanIN lesions and number of ducts were counted, and proliferation was measured by Ki67 immunohistochemistry (IHC). Qualitative analysis of fibrosis was analyzed by Trichrome Masson and Sirius Red staining, while vimentin was used for quantification. Expression analyses of fibrosis, pancreatitis, or desmoplasia associated markers (α-SMA, Shh, COX-2, Muc6, Col1a1, and Ctgf) were performed by IHC and/or qRT-PCR. Our STP mice exhibited advanced ADM, increased fibrosis, increased numbers of PanIN lesions, overexpression of chronic pancreatitis-related marker Muc6, and elevated expression of desmoplasia-associated marker Col1A1, compared to the MT-TGFα mice. The inactivation of Smad4 in the exocrine compartment was responsible for both the enhanced PanIN formation and fibrosis in the pancreas. The phenotype of the STP mice represents a transient state from ADMs to PanINs, closely mimicking the interface area seen in human chronic pancreatitis associated with PDAC. We have documented a novel mouse model, the STP mice, which displayed histologic presentations reminiscent to those of human chronic pancreatitis with signs of early tumorigenesis. The STP mice could be a suitable animal model for interrogating the transition of chronic pancreatitis to pancreatic cancer.
    PLoS ONE 01/2015; 10(3):e0120851. DOI:10.1371/journal.pone.0120851 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Luminal A and B breast cancers are the most prevalent forms of breast cancer diagnosed in women. Compared to luminal A breast cancer patients, patients with luminal B breast cancers experience increased disease recurrence and lower overall survival. The mechanisms that regulate the luminal B subtype remain poorly understood. The chemokine CCL2 is overexpressed in breast cancer, correlating with poor patient prognosis. The purpose of this study was to determine the role of CCL2 expression in luminal B breast cancer cells. Breast tissues, MMTV-PyVmT and MMTV-Neu transgenic mammary tumors forming luminal B-like lesions, were immunostained for CCL2 expression. To determine the role of CCL2 in breast cancer cells, CCL2 gene expression was silenced in mammary tumor tissues and cells using TAT cell-penetrating peptides non-covalently cross linked to siRNAs (Ca-TAT/siRNA). CCL2 expression was examined by ELISA and flow cytometry. Cell growth and survival were analyzed by flow cytometry, immunocytochemistry, and fluorescence microscopy. CCL2 expression was significantly increased in luminal B breast tumors, MMTV- PyVmT and MMTV-Neu mammary tumors, compared or normal breast tissue or luminal A breast tumors. Ca-TAT delivery of CCL2 siRNAs significantly reduced CCL2 expression in PyVmT mammary tumors, and decreased cell proliferation and survival. CCL2 gene silencing in PyVmT carcinoma cells or BT474 luminal B breast cancer cells decreased cell growth and viability associated with increased necrosis and autophagy. CCL2 expression is overexpressed in luminal B breast cancer cells and is important for regulating cell growth and survival by inhibiting necrosis and autophagy.
    Breast Cancer Research and Treatment 03/2015; 150(2). DOI:10.1007/s10549-015-3324-4 · 4.20 Impact Factor