Article

Intracranial EEG substrates of scalp EEG interictal spikes

University of Chicago, Chicago, Illinois, United States
Epilepsia (Impact Factor: 4.58). 06/2005; 46(5):669-76. DOI: 10.1111/j.1528-1167.2005.11404.x
Source: PubMed

ABSTRACT To determine the area of cortical generators of scalp EEG interictal spikes, such as those in the temporal lobe epilepsy.
We recorded simultaneously 26 channels of scalp EEG with subtemporal supplementary electrodes and 46 to 98 channels of intracranial EEG in 16 surgery candidates with temporal lobe epilepsy. Cerebral discharges with and without scalp EEG correlates were identified, and the area of cortical sources was estimated from the number of electrode contacts demonstrating concurrent depolarization.
We reviewed approximately 600 interictal spikes recorded with intracranial EEG. Only a very few of these cortical spikes were associated with scalp recognizable potentials; 90% of cortical spikes with a source area of >10 cm(2) produced scalp EEG spikes, whereas only 10% of cortical spikes having <10 cm(2) of source area produced scalp potentials. Intracranial spikes with <6 cm(2) of area were never associated with scalp EEG spikes.
Cerebral sources of scalp EEG spikes are larger than commonly thought. Synchronous or at least temporally overlapping activation of 10-20 cm(2) of gyral cortex is common. The attenuating property of the skull may actually serve a useful role in filtering out all but the most significant interictal discharges that can recruit substantial surrounding cortex.

0 Followers
 · 
122 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Functional magnetic resonance imaging (fMRI), which has high spatial resolution, is increasingly used to evaluate cerebral functions in neurological and psychiatric diseases. The main limitation of fMRI is that it detects neural activity indirectly, through the associated slow hemodynamic variations. Because neurovascular coupling can be regionally altered by pathological conditions or drugs, fMRI responses may not truly reflect neural activity. Electroencephalography (EEG) recordings, which directly detect neural activity with optimal temporal resolution, can now be obtained during fMRI data acquisition. Therefore, there is a growing interest in combining the techniques to obtain simultaneous EEG-fMRI recordings. The EEG-fMRI approach has several promising clinical applications. The first is the detection of cortical areas involved in interictal and ictal epileptic activity. Second, combining evoked potentials with fMRI could be an accurate way to study eloquent cortical areas for the planning of neurosurgery or rehabilitation, circumventing the above-mentioned limitation of fMRI. Finally, the use of this approach to evaluate the functional connectivity of resting-state networks would extend the applications of EEG-fMRI to uncooperative or unconscious patients. Integration of multimodal neuroimaging methods: a rationale for clinical applications of simultaneous EEG-fMRI
    Functional neurology 04/2015; · 1.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism by which the healthy heart and brain die rapidly in the absence of oxygen is not well understood. We performed continuous electrocardiography and electroencephalography in rats undergoing experimental asphyxia and analyzed cortical release of core neurotransmitters, changes in brain and heart electrical activity, and brain-heart connectivity. Asphyxia stimulates a robust and sustained increase of functional and effective cortical connectivity, an immediate increase in cortical release of a large set of neurotransmitters, and a delayed activation of corticocardiac functional and effective connectivity that persists until the onset of ventricular fibrillation. Blocking the brain's autonomic outflow significantly delayed terminal ventricular fibrillation and lengthened the duration of detectable cortical activities despite the continued absence of oxygen. These results demonstrate that asphyxia activates a brainstorm, which accelerates premature death of the heart and the brain.
    Proceedings of the National Academy of Sciences 04/2015; 112(16). DOI:10.1073/pnas.1423936112 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain activity data in general and more specifically in epilepsy can be represented as a matrix that includes measures of electrophysiology, anatomy and behaviour. Each of these sub-matrices has a complex interaction depending upon the brain state i.e., rest, cognition, seizures and interictal periods. This interaction presents significant challenges for interpretation but also potential for developing further insights into individual event types. Successful treatments in epilepsy hinge on unravelling these complexities, and also on the sensitivity and specificity of methods that characterize the nature and localization of underlying physiological and pathological networks. Limitations of pharmacological and surgical treatments call for refinement and elaboration of methods to improve our capability to localise the generators of seizure activity and our understanding of the neurobiology of epilepsy. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI), by potentially circumventing some of the limitations of EEG in terms of sensitivity, can allow the mapping of haemodynamic networks over the entire brain related to specific spontaneous and triggered epileptic events in humans, and thereby provide new localising information. In this work we review the published literature, and discuss the methods and utility of EEG-fMRI in localising the generators of epileptic activity. We draw on our experience and that of other groups, to summarise the spectrum of information provided by an increasing number of EEG-fMRI case-series, case studies and group studies in patients with epilepsy, for its potential role to elucidate epileptic generators and networks. We conclude that EEG-fMRI provides a multidimensional view that contributes valuable clinical information to localize the epileptic focus with potential important implications for the surgical treatment of some patients with drug-resistant epilepsy, and insights into the resting state and cognitive network dynamics.
    04/2015; 5(2):300-12. DOI:10.3978/j.issn.2223-4292.2015.02.04

Preview

Download
2 Downloads