Intracranial EEG substrates of scalp EEG interictal spikes

University of Chicago, Chicago, Illinois, United States
Epilepsia (Impact Factor: 4.58). 06/2005; 46(5):669-76. DOI: 10.1111/j.1528-1167.2005.11404.x
Source: PubMed

ABSTRACT To determine the area of cortical generators of scalp EEG interictal spikes, such as those in the temporal lobe epilepsy.
We recorded simultaneously 26 channels of scalp EEG with subtemporal supplementary electrodes and 46 to 98 channels of intracranial EEG in 16 surgery candidates with temporal lobe epilepsy. Cerebral discharges with and without scalp EEG correlates were identified, and the area of cortical sources was estimated from the number of electrode contacts demonstrating concurrent depolarization.
We reviewed approximately 600 interictal spikes recorded with intracranial EEG. Only a very few of these cortical spikes were associated with scalp recognizable potentials; 90% of cortical spikes with a source area of >10 cm(2) produced scalp EEG spikes, whereas only 10% of cortical spikes having <10 cm(2) of source area produced scalp potentials. Intracranial spikes with <6 cm(2) of area were never associated with scalp EEG spikes.
Cerebral sources of scalp EEG spikes are larger than commonly thought. Synchronous or at least temporally overlapping activation of 10-20 cm(2) of gyral cortex is common. The attenuating property of the skull may actually serve a useful role in filtering out all but the most significant interictal discharges that can recruit substantial surrounding cortex.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional magnetic resonance imaging (fMRI), which has high spatial resolution, is increasingly used to evaluate cerebral functions in neurological and psychiatric diseases. The main limitation of fMRI is that it detects neural activity indirectly, through the associated slow hemodynamic variations. Because neurovascular coupling can be regionally altered by pathological conditions or drugs, fMRI responses may not truly reflect neural activity. Electroencephalography (EEG) recordings, which directly detect neural activity with optimal temporal resolution, can now be obtained during fMRI data acquisition. Therefore, there is a growing interest in combining the techniques to obtain simultaneous EEG-fMRI recordings. The EEG-fMRI approach has several promising clinical applications. The first is the detection of cortical areas involved in interictal and ictal epileptic activity. Second, combining evoked potentials with fMRI could be an accurate way to study eloquent cortical areas for the planning of neurosurgery or rehabilitation, circumventing the above-mentioned limitation of fMRI. Finally, the use of this approach to evaluate the functional connectivity of resting-state networks would extend the applications of EEG-fMRI to uncooperative or unconscious patients. Integration of multimodal neuroimaging methods: a rationale for clinical applications of simultaneous EEG-fMRI.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To assess the visibility and detectability in scalp electroencephalography (EEG) of cortical sources in frontal lobe epilepsy (FLE) as to their localization, and the extent and amplitude of activation. We analyzed the simultaneous subdural and scalp interictal EEG recordings of 14 patients with refractory frontal lobe epilepsy (FLE) associated with focal cortical dysplasia. Subdural spike types were identified and averaged for source localization and detection of their scalp EEG correlates. Both raw and averaged scalp EEG segments were reviewed for spikes, blinded to subdural segments. We further analyzed the correlation of spike-to-background amplitude ratios in subdural and scalp EEG. We identified 36 spike types in subdural EEG, corresponding to 29 distinct sources. Four of 29 sources were visible by visual evaluation of scalp EEG and six additional sources were detectable after averaging: four in the medial frontal, two in the dorsolateral gyri, two in the depth of dorsolateral sulci, and two in the basal frontal region. Cortical sources generating scalp-detectable spikes presented a median of 6 cm(2) of activated cortical convexity surface and a subdural spike-to-background-amplitude ratio >8. These sources were associated with a higher number of activated subdural grid contacts and a higher subdural spike-to-background amplitude ratio than sources generating non-scalp-detectable spikes. Not only dorsolateral but also basal and medial sources can be detectable in FLE. This is the first in vivo demonstration derived from simultaneous subdural and scalp EEG recordings of the complementary significance of extensive source activation and higher subdural spike-to-background amplitude ratio in the detection of cortical sources in FLE.
    Epilepsia 01/2014; 55(2). DOI:10.1111/epi.12512 · 4.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrical source imaging (ESI) aims at reconstructing the electrical brain activity from scalp EEG. When applied to interictal epileptiform discharges (IEDs), this technique is of great use for identifying the irritative zone in focal epilepsies. Inaccuracies in the modeling of electro-magnetic field propagation in the head (forward model) may strongly influence ESI and lead to mislocalization of IED generators. However, a systematic study on the influence of the selected head model on the localization precision of IED in a large number of patients with known focus localization has not yet been performed. We here present such a performance evaluation of different head models in a dataset of 38 epileptic patients who have undergone high-density scalp EEG, intracranial EEG and, for the majority, subsequent surgery. We compared ESI accuracy resulting from three head models: a Locally Spherical Model with Anatomical Constraints (LSMAC), a Boundary Element Model (BEM) and a Finite Element Model (FEM). All of them were computed from the individual MRI of the patient and ESI was performed on averaged IED. We found that all head models provided very similar source locations. In patients having a positive post-operative outcome, at least 74% of the source maxima were within the resection. The median distance from the source maximum to the nearest intracranial electrode showing IED was 13.2, 15.6 and 15.6 mm for LSMAC, BEM and FEM, respectively. The study demonstrates that in clinical applications, the use of highly sophisticated and difficult to implement head models is not a crucial factor for an accurate ESI.
    01/2014; 5:77-83. DOI:10.1016/j.nicl.2014.06.005