Article

The tRNA methylase METTL1 is phosphorylated and inactivated by PKB and RSK in vitro and in cells.

MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB complex, University of Dundee, Dundee, UK.
The EMBO Journal (Impact Factor: 10.75). 06/2005; 24(9):1696-705. DOI: 10.1038/sj.emboj.7600648
Source: PubMed

ABSTRACT A substrate for protein kinase B (PKB)alpha in HeLa cell extracts was identified as methyltransferase-like protein-1 (METTL1), the orthologue of trm8, which catalyses the 7-methylguanosine modification of tRNA in Saccharomyces cerevisiae. PKB and ribosomal S6 kinase (RSK) both phosphorylated METTL1 at Ser27 in vitro. Ser27 became phosphorylated when HEK293 cells were stimulated with insulin-like growth factor-1 (IGF-1) and this was prevented by inhibition of phosphatidyinositol 3-kinase. The IGF-1-induced Ser27 phosphorylation did not occur in 3-phosphoinositide-dependent protein kinase-1 (PDK1)-deficient embryonic stem cells, but occurred normally in PDK1[L155E] cells, indicating that the effect of IGF-1 is mediated by PKB. METTL1 also became phosphorylated at Ser27 in response to phorbol-12-myristate 13-acetate and this was prevented by PD 184352 or pharmacological inhibition of RSK. Phosphorylation of METTL1 by PKB or RSK inactivated METTL1 in vitro, as did mutation of Ser27 to Asp or Glu. Expression of METTL1[S27D] or METTL1[S27E] did not rescue the growth phenotype of yeast lacking trm8. In contrast, expression of METTL1 or METTL1[S27A] partially rescued growth. These results demonstrate that METTL1 is inactivated by PKB and RSK in cells, and the potential implications of this finding are discussed.

Full-text

Available from: Axel Knebel, May 05, 2015
0 Followers
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonessential tRNA modifications by methyltransferases are evolutionarily conserved and have been reported to stabilize mature tRNA molecules and prevent rapid tRNA decay (RTD). The tRNA modifying enzymes, NSUN2 and METTL1, are mammalian orthologs of yeast Trm4 and Trm8, which are required for protecting tRNA against RTD. A simultaneous overexpression of NSUN2 and METTL1 is widely observed among human cancers suggesting that targeting of both proteins provides a novel powerful strategy for cancer chemotherapy. Here, we show that combined knockdown of NSUN2 and METTL1 in HeLa cells drastically potentiate sensitivity of cells to 5-fluorouracil (5-FU) whereas heat stress of cells revealed no effects. Since NSUN2 and METTL1 are phosphorylated by Aurora-B and Akt, respectively, and their tRNA modifying activities are suppressed by phosphorylation, overexpression of constitutively dephosphorylated forms of both methyltransferases is able to suppress 5-FU sensitivity. Thus, NSUN2 and METTL1 are implicated in 5-FU sensitivity in HeLa cells. Interfering with methylation of tRNAs might provide a promising rationale to improve 5-FU chemotherapy of cancer.
    PLoS Genetics 09/2014; 10(9):e1004639. DOI:10.1371/journal.pgen.1004639 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are seven cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, five of which require only a single subunit in bacteria, and two of which are not found in bacteria. These enzymes include the deaminase Tad2-Tad3, and the methyltransferases Trm6-Trm61, Trm8-Trm82, Trm7-Trm732, and Trm7-Trm734, Trm9-Trm112, and Trm11-Trm112. We describe the occurrence and biological role of each modification, evidence for a required partner protein in S. cerevisiae and other eukaryotes, evidence for a single subunit in bacteria, and evidence for the role of the non-catalytic binding partner. Although it is unclear why these eukaryotic enzymes require partner proteins, studies of some two-subunit modification enzymes suggest that the partner proteins help expand substrate range or allow integration of cellular activities.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
    Frontiers in Genetics 05/2014; 5:144. DOI:10.3389/fgene.2014.00144