Article

Neutralisation of TGF beta or binding of VLA-4 to fibronectin prevents rat tendon adhesion following transection.

ATMU & Division of Cancer Sciences, University of Glasgow, Level 3 Queen Elizabeth Building, UK.
Cytokine (Impact Factor: 2.87). 06/2005; 30(4):195-202. DOI: 10.1016/j.cyto.2004.12.017
Source: PubMed

ABSTRACT Following tendon injury, severe loss of function often occurs either as a result of obliteration of the synovial canal with fibrous scar tissue or from rupture of the repaired tendon. The role of cell engineering in tendon repair is to promote strong and rapid healing of tendon whilst at the same time facilitating rapid reconstitution of the synovial canal. Modification of the immediate inflammatory response around healing tendon has been found to be of value. Experimentally this has been achieved by neutralisation of transforming growth factor-beta over the first 3 days following injury, or by blockade of inflammatory cell binding to the CS-1 locus on fibronectin with an anti-VLA-4 antibody, or with the synthetic VLA-4 inhibitor, CS-1 peptide, in a rat model of tendon transection. It is concluded from this pilot study that the treatments described hold promise in improving outcomes of the common clinical problem of tendon injury in man.

0 Followers
 · 
77 Views
  • Source
    • "Transforming growth factor-Beta (TGF-β) is a potent fibrotic agent. Its inhibition with neutralizing antibodies has been shown to significantly reduce fibronectin concentrations and adhesion formation during early wound healing (Jorgensen et al., 2005). TGF-β1 has been shown to tilt gene expression in favour of ECM synthesis rather than matrix-remodelling matrix metalloproteinases , providing a mechanism for its promotion of adhesion formation (Farhat et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineering of flexor tendons addresses a challenge often faced by hand surgeons: the restoration of function and improvement of healing with a limited supply of donor tendons. Creating an engineered tendon construct is dependent upon understanding the normal healing mechanisms of the tendon and tendon sheath. The production of a tendon construct includes: creating a three-dimensional scaffold; seeding cells within the scaffold; encouraging cellular growth within the scaffold while maintaining a gliding surface; and finally ensuring mechanical strength. An effective construct incorporates these factors in its design, with the ultimate goal of creating tendon substitutes that are readily available to the reconstructive hand surgeon.
    11/2013; 39(1). DOI:10.1177/1753193413512432
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypertrophic scar and keloids are fibroproliferative disorders of the skin which occur often unpredictably, following trauma and inflammation that compromise cosmesis and function and commonly recur following surgical attempts for improvement. Despite decades of research in these fibrotic conditions, current non-surgical methods of treatment are slow, inconvenient and often only partially effective. Fibroblasts from these conditions are activated to produce extracellular matrix proteins such as collagen I and III, proteoglycans such as versican and biglycan and growth factors, including transforming growth factor-β and insulin like growth factor I. However, more consistently these cells produce less remodeling enzymes including collagenase and other matrix metalloproteinases, as well as the small proteoglycan decorin which is important for normal collagen fibrillogenesis. Recently, the systemic response to injury appears to influence the local healing process whereby increases in Th2 and possibly Th3 cytokines such as IL-2, IL-4 and IL-10 and TGF-β are present in the circulating lymphocytes in these fibrotic conditions. Finally, unique bone marrow derived cells including mesenchymal and endothelial stem cells as well as fibrocytes appear to traffic into healing wounds and influence the healing tissue. On this background, clinicians are faced with patients who require treatment and the pathophysiologic basis as currently understood is reviewed for a number of emerging modalities.
    Wound Repair and Regeneration 08/2007; 15:S6 - S17. DOI:10.1111/j.1524-475X.2007.00219.x · 2.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reconstruction of flexor tendons often results in adhesions that compromise joint flexion. Little is known about the factors involved in the formation of flexor tendon graft adhesions. In this study, we developed and characterized a novel mouse model of flexor digitorum longus (FDL) tendon reconstruction with live autografts or reconstituted freeze-dried allografts. Grafted tendons were evaluated at multiple time points up to 84 days post-reconstruction. To assess the flexion range of the metatarsophalangeal joint, we developed a quantitative outcome measure proportional to the resistance to tendon gliding due to adhesions, which we termed the Gliding Coefficient. At 14 days post-grafting, the Gliding Coefficient was 29- and 26-fold greater than normal FDL tendon for both autografts and allografts, respectively (p < 0.001), and subsequently doubled for 28-day autografts. Interestingly, there were no significant differences in maximum tensile force or stiffness between live autograft and freeze-dried allograft repairs over time. Histologically, autograft healing was characterized by extensive remodeling and exuberant scarring around both the ends and the body of the graft, whereas allograft scarring was abundant only near the graft-host junctions. Gene expression of GDF-5 and VEGF were significantly increased in 28-day autografts compared to allografts and to normal tendons. These results suggest that the biomechanical advantages for tendon reconstruction using live autografts over devitalized allografts are minimal. This mouse model can be useful in elucidating the molecular mechanisms in tendon repair and can aid in preliminary screening of molecular treatments of flexor tendon adhesions.
    Journal of Orthopaedic Research 06/2008; 26(6):824-33. DOI:10.1002/jor.20531 · 2.97 Impact Factor
Show more