Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles

Department of Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA.
The Journal of Cell Biology (Impact Factor: 9.83). 06/2005; 169(3):383-9. DOI: 10.1083/jcb.200501157
Source: PubMed


Cytoskeletal dynamics at the Golgi apparatus are regulated in part through a binding interaction between the Golgi-vesicle coat protein, coatomer, and the regulatory GTP-binding protein Cdc42 (Wu, W.J., J.W. Erickson, R. Lin, and R.A. Cerione. 2000. Nature. 405:800-804; Fucini, R.V., J.L. Chen, C. Sharma, M.M. Kessels, and M. Stamnes. 2002. Mol. Biol. Cell. 13:621-631). The precise role of this complex has not been determined. We have analyzed the protein composition of Golgi-derived coat protomer I (COPI)-coated vesicles after activating or inhibiting signaling through coatomer-bound Cdc42. We show that Cdc42 has profound effects on the recruitment of dynein to COPI vesicles. Cdc42, when bound to coatomer, inhibits dynein binding to COPI vesicles whereas preventing the coatomer-Cdc42 interaction stimulates dynein binding. Dynein recruitment was found to involve actin dynamics and dynactin. Reclustering of nocodazole-dispersed Golgi stacks and microtubule/dynein-dependent ER-to-Golgi transport are both sensitive to disrupting Cdc42 mediated signaling. By contrast, dynein-independent transport to the Golgi complex is insensitive to mutant Cdc42. We propose a model for how proper temporal regulation of motor-based vesicle translocation could be coupled to the completion of vesicle formation.

Download full-text


Available from: Hediye Erdjument-Bromage, May 22, 2014
  • Source
    • "In addition, recruitment of coatomer by a nucleoporin may induce the breakdown of the nuclear envelope (Liu et al. 2003). An interaction of coatomer with cdc42 (Wu et al. 2000) and dynein was attributed to positioning of the Golgi (Chen et al. 2005; Hehnly et al. 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Golgi serves as a hub for intracellular membrane traffic in the eukaryotic cell. Transport within the early secretory pathway, that is within the Golgi and from the Golgi to the endoplasmic reticulum, is mediated by COPI-coated vesicles. The COPI coat shares structural features with the clathrin coat, but differs in the mechanisms of cargo sorting and vesicle formation. The small GTPase Arf1 initiates coating on activation and recruits en bloc the stable heptameric protein complex coatomer that resembles the inner and the outer shells of clathrin-coated vesicles. Different binding sites exist in coatomer for membrane machinery and for the sorting of various classes of cargo proteins. During the budding of a COPI vesicle, lipids are sorted to give a liquid-disordered phase composition. For the release of a COPI-coated vesicle, coatomer and Arf cooperate to mediate membrane separation.
    Cold Spring Harbor perspectives in biology 08/2011; 3(11):a005231. DOI:10.1101/cshperspect.a005231 · 8.68 Impact Factor
  • Source
    • "Our results are consistent with the hypothesis proposed by others that small GTPases of the ARF and Rho families function coordinately in vivo both at the cell periphery and at the Golgi [4], [42]. Here, we have demonstrated that ARFGAP1 also acts in a bifunctional manner. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulation of the actin cytoskeleton and membrane trafficking is coordinated in mammalian cells. One of the regulators of membrane traffic, the small GTP-binding protein ARF1, also activates phosphatidylinositol kinases that in turn affect actin polymerization. ARFGAP1 is a GTPase activating protein (GAP) for ARF1 that is found on Golgi membranes. We present evidence that ARFGAP1 not only serves as a GAP for ARF1, but also can affect the actin cytoskeleton. As cells attach to a culture dish foci of actin appear prior to the cells flattening and spreading. We have observed that overexpression of a truncated ARFGAP1 that lacks catalytic activity for ARF, called GAP273, caused these foci to persist for much longer periods than non-transfected cells. This phenomenon was dependent on the level of GAP273 expression. Furthermore, cell spreading after re-plating or cell migration into a previously scraped area was inhibited in cells transfected with GAP273. Live cell imaging of such cells revealed that actin-rich membrane blebs formed that seldom made protrusions of actin spikes or membrane ruffles, suggesting that GAP273 interfered with the regulation of actin dynamics during cell spreading. The over-expression of constitutively active alleles of ARF6 and Rac1 suppressed the effect of GAP273 on actin. In addition, the activation of Rac1 by serum, but not that of RhoA or ARF6, was inhibited in cells over-expressing GAP273, suggesting that Rac1 is a likely downstream effector of ARFGAP1. The carboxyl terminal 65 residues of ARFGAP1 were sufficient to produce the effects on actin and cell spreading in transfected cells and co-localized with cortical actin foci. ARFGAP1 functions as an inhibitor upstream of Rac1 in regulating actin cytoskeleton. In addition to its GAP catalytic domain and Golgi binding domain, it also has an actin regulation domain in the carboxyl-terminal portion of the protein.
    PLoS ONE 04/2011; 6(4):e18458. DOI:10.1371/journal.pone.0018458 · 3.23 Impact Factor
  • Source
    • "In addition, various Rho-GTPases have been implicated in intracellular vesicle trafficking. These include Cdc42 that inhibits recruitment of the microtubular motor dynein to COP I-coated Golgi vesicles [66] and RhoA and Rac affecting both clathrin-dependent [67] and clathrin-independent [68] endocytosis. The latter process was recently reported to involve Arf family GTPases that might be linked to the Rho family via GIT proteins, Arfaptins or ARAPs [69]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The current view of peroxisome inheritance provides for the formation of new peroxisomes by both budding from the endoplasmic reticulum and autonomous division. Here we investigate peroxisome-cytoskeleton interactions and show by proteomics, biochemical and immunofluorescence analyses that actin, non-muscle myosin IIA (NMM IIA), RhoA, Rho kinase II (ROCKII) and Rab8 associate with peroxisomes. Our data provide evidence that (i) RhoA in its inactive state, maintained for example by C. botulinum toxin exoenzyme C3, dissociates from peroxisomes enabling microtubule-based peroxisomal movements and (ii) dominant-active RhoA targets to peroxisomes, uncouples the organelles from microtubules and favors Rho kinase recruitment to peroxisomes. We suggest that ROCKII activates NMM IIA mediating local peroxisomal constrictions. Although our understanding of peroxisome-cytoskeleton interactions is still incomplete, a picture is emerging demonstrating alternate RhoA-dependent association of peroxisomes to the microtubular and actin cytoskeleton. Whereas association of peroxisomes to microtubules clearly serves bidirectional, long-range saltatory movements, peroxisome-acto-myosin interactions may support biogenetic functions balancing peroxisome size, shape, number, and clustering.
    PLoS ONE 11/2010; 5(11):e13886. DOI:10.1371/journal.pone.0013886 · 3.23 Impact Factor
Show more