ICP-MS multielemental determination of metals potentially released from dental implants and articular prostheses in human biological fluids.

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
Analytical and Bioanalytical Chemistry (Impact Factor: 3.66). 07/2005; 382(4):1001-9. DOI: 10.1007/s00216-005-3165-9
Source: PubMed

ABSTRACT A sector field high-resolution (HR)-ICP-MS and an octapole reaction system (ORS)-ICP-MS have been compared for the simultaneous determination of traces of metals (Ti, V, Cr, Co, Ni, and Mo) released from dental implants and articular prostheses in human biological fluids. Optimum sample treatments were evaluated to minimize matrix effects in urine and whole blood. Urine samples were diluted tenfold with ultrapure water, whereas whole blood samples were digested with high-purity nitric acid and hydrogen peroxide and finally diluted tenfold with ultrapure water. In both matrices, internal standardization (Ga and Y) was employed to avoid potential matrix interferences and ICP-MS signal drift. Spectral interferences arising from the plasma gases or the major components of urine and whole blood were identified by (HR)-ICP-MS at 3,000 resolving power. The capabilities of (HR)-ICP-MS and (ORS)-ICP-MS for the removal of such spectral interferences were evaluated and compared. Results indicate that polyatomic interferences, which hamper the determination of such metallic elements in these biological samples, could be overcome by using a resolving power of 3,000. Using (ORS)-ICP-MS, all those elements could be quantified except Ti and V (due to the polyatomic ions 31P16O and 35Cl16O, respectively). The accuracy of the proposed methodologies by (HR)- and (ORS)-ICP-MS was checked against two reference materials. Good agreement between the given values and the concentrations obtained for all the analytes under scrutiny was found except for Ti and V when analyzed by (ORS)-ICP-MS.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Metal ion release from metallic materials, e.g. metallic alloys and pure metals, implanted into the human body in dental and orthopedic surgery are becoming a major cause for concern. This review briefly provides an overview of both metallic alloys and pure metals used in implant materials in dental and orthopedic surgery. Additionally, a short section is dedicated to important biomaterials and their corrosive behavior in both real solutions and various types of media that model human biological fluids and tissues. The present review gives an overview of analytical methods, techniques and different approaches applied to measurement of in vivo trace metals released into body fluids and tissues from patients carrying metal-on-metal prosthesis and metal dental implants. Reference levels of ion concentrations in body fluids and tissues that have been determined by a host of studies are compiled, reviewed and presented in this paper. Finally, a collection of published clinical data on in vivo released trace metals from metallic medical implants is included.
    Acta biomaterialia 01/2014; · 5.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: The method for the determination of As, Al, Cd, Ni, Pb (toxic elements) and Cr, Co, Cu, Fe, Mn, Zn (essential elements) in human urine by the use of Inductively Coupled Plasma Mass Spectrometry (quadrupole ICP-MS DRCe Elan, Perkin Elmer) with the dynamic reaction cell (DRC) was developed. MATERIALS AND METHODS: The method has been applied for multi-element analysis of the urine of 16 non-exposed healthy volunteers and 27 workers employed in a copper smelter. The analysis was conducted after initial 10-fold dilution of the urine samples with 0,1% nitric acid. Rhodium was used as an internal standard. The method validation parameters such as detection limit, sensitivity, precision were described for all elements. Accuracy of the method was checked by the regular use of certified reference materials ClinCheck®-Control Urine (Recipe) as well as by participation of the laboratory in the German External Quality Assessment Scheme (G-EQUAS). RESULTS: The detection limits (DL 3s) of the applied method were 0.025, 0.007, 0.002, 0.004, 0.004, 0.086, 0.037, 0.009, 0.016, 0.008, 0.064 (μg/l) for Al, As, Cd, Cr, Co, Cu, Fe, Mn, Ni, Pb, Zn in urine, respectively. For each element linearity with correlation coefficient of at least 0.999 was determined. Spectral interferences from some of the ions were removed using DRC-e with addition of alternative gas: methane for cobalt, copper, cadmium, chromium, iron, manganese, nickel and rhodium, and oxygen for arsenic. CONCLUSIONS: The developed method allows to determine simultaneously eleven elements in the urine with low detection limits, high sensitivity and good accuracy. Moreover, the method is appropriate for the assessment of both environmental and occupational exposure.
    International Journal of Occupational Medicine and Environmental Health 06/2013; · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ti is frequently used in implants and prostheses and it has been shown before that the presence of these in the human body can lead to elevated Ti concentrations in body fluids such as serum and urine. As identification of the exact mechanisms responsible for this increase in Ti concentrations, and the risks associated with it, are not fully understood, it is important to have sound analytical methods that enable straightforward quantification of Ti levels in body fluids (for both implanted and non-implanted individuals). Until now, only double-focusing sector field ICP-mass spectrometry (SF-ICP-MS) offered limits of detection that are good enough to deal with the very low basal levels of Ti in human serum. This work reports on the development of a novel method for the accurate and precise determination of trace levels of Ti in human serum samples, based on the use of ICP-MS/MS. O2 and NH3/He have been compared as reaction gases. While the use of O2 did not enable to overcome all spectral interferences, it has been shown that conversion of Ti(+) ions into Ti(NH3)6(+) cluster ions by using NH3/He as a reaction gas in an ICP-QQQ-MS system, operated in MS/MS mode, provided interference-free conditions and sufficiently low limits of detection, down to 3ngL(-1) (instrumental detection limit obtained for the most abundant Ti isotope). The accuracy of the method proposed was evaluated by analysis of a Seronorm Trace Elements Serum L-1 reference material and by comparing the results obtained with those achieved by means of SF-ICP-MS. As a proof-of-concept, the newly developed method was successfully applied to the determination of Ti in serum samples obtained from individuals with and without Ti-based implants. All results were found to be in good agreement with those obtained by means of SF-ICP-MS. The typical basal Ti level in human serum was found to be <1μgL(-1), while values in the range of 2-6μgL(-1) were observed for implanted patients.
    Analytica chimica acta 01/2014; 809:1-8. · 4.31 Impact Factor