Exosomes Derived from IL-10-Treated Dendritic Cells Can Suppress Inflammation and Collagen-Induced Arthritis

Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
The Journal of Immunology (Impact Factor: 4.92). 06/2005; 174(10):6440-8. DOI: 10.4049/jimmunol.174.10.6440
Source: PubMed


We have demonstrated previously that local, adenoviral-mediated gene transfer of viral IL-10 to a single joint of rabbits and mice with experimental arthritis can suppress disease in both the treated and untreated contralateral joints. This contralateral effect is mediated in part by APCs able to traffic from the treated joint to lymph nodes as well as to untreated joints. Moreover, injection of dendritic cells (DC) genetically modified to express IL-4 or Fas ligand was able to reverse established murine arthritis. To examine the ability of exosomes derived from immunosuppressive DCs to reduce inflammation and autoimmunity, murine models of delayed-type hypersensitivity and collagen-induced arthritis were used. In this study, we demonstrate that periarticular administration of exosomes purified from either bone marrow-derived DCs transduced ex vivo with an adenovirus expressing viral IL-10 or bone marrow-derived DCs treated with recombinant murine IL-10 were able to suppress delayed-type hypersensitivity responses within injected and untreated contralateral joints. In addition, the systemic injection of IL-10-treated DC-derived exosomes was able suppress the onset of murine collagen-induced arthritis as well as reduce severity of established arthritis. Taken together, these data suggest that immature DCs are able to secrete exosomes that are involved in the suppression of inflammatory and autoimmune responses. Thus DC-derived exosomes may represent a novel, cell-free therapy for the treatment of autoimmune diseases.

Download full-text


Available from: Rajasree Menon, Dec 17, 2013
  • Source
    • "Besides the common surface markers of exosomes, such as CD9 and CD81, MSCs contain specific membrane adhesive molecules, including CD29, CD44, and CD73 that are expressed on the MSC generated exosomes (Lai et al., 2012). Further, the specific conditions of cell preparation affect the exosome cargo (Kim et al., 2005; Park et al., 2010). In the MSC derived exosome, protein components also changed when exosomes were obtained from different MSC cultured media. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell-based therapy, e.g., multipotent mesenchymal stromal cell (MSC) treatment, shows promise for the treatment of various diseases. The strong paracrine capacity of these cells and not their differentiation capacity, is the principal mechanism of therapeutic action. MSCs robustly release exosomes, membrane vesicles (~30-100 nm) originally derived in endosomes as intraluminal vesicles, which contain various molecular constituents including proteins and RNAs from maternal cells. Contained among these constituents, are small non-coding RNA molecules, microRNAs (miRNAs), which play a key role in mediating biological function due to their prominent role in gene regulation. The release as well as the content of the MSC generated exosomes are modified by environmental conditions. Via exosomes, MSCs transfer their therapeutic factors, especially miRNAs, to recipient cells, and therein alter gene expression and thereby promote therapeutic response. The present review focuses on the paracrine mechanism of MSC exosomes, and the regulation and transfer of exosome content, especially the packaging and transfer of miRNAs which enhance tissue repair and functional recovery. Perspectives on the developing role of MSC mediated transfer of exosomes as a therapeutic approach will also be discussed.
    Frontiers in Cellular Neuroscience 11/2014; 8:377. DOI:10.3389/fncel.2014.00377 · 4.29 Impact Factor
  • Source
    • "Recently it was shown that different iDC culturing conditions can lead to an altered exosome composition of MHCII and costimulatory molecules [25]. Furthermore exosomes were shown to have immunomodulatory effects in specific contexts [26], [27] and might therefore directly contribute to altered immune responses that add to their role of modulating the surface expression of costimulatory molecules. Notably, we observed that the cellular distribution pattern of CD11c – that is commonly distributed around the f-actin core of podosomes [19] – was more compact and intracellularly aggregated in aiDC. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The maturation status of dendritic cells determines whether interacting T cells are activated or if they become tolerant. Previously we could induce T cell tolerance by applying a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor (HMGCRI) atorvastatin, which also modulates MHC class II expression and has therapeutic potential in autoimmune disease. Here, we aimed at elucidating the impact of this therapeutic strategy on T cell differentiation as a consequence of alterations in dendritic cell function. We investigated the effect of HMGCRI during differentiation of peripheral human monocytes and murine bone marrow precursors to immature DC in vitro and assessed their phenotype. To examine the stimulatory and tolerogenic capacity of these modulated immature dendritic cells, we measured proliferation and suppressive function of CD4+ T cells after stimulation with the modulated immature dendritic cells. We found that an HMGCRI, atorvastatin, prevents dendrite formation during the generation of immature dendritic cells. The modulated immature dendritic cells had a diminished capacity to take up and present antigen as well as to induce an immune response. Of note, the consequence was an increased capacity to differentiate naïve T cells towards a suppressor phenotype that is less sensitive to proinflammatory stimuli and can effectively inhibit the proliferation of T effector cells in vitro. Thus, manipulation of antigen-presenting cells by HMGCRI contributes to an attenuated immune response as shown by promotion of T cells with suppressive capacities.
    PLoS ONE 07/2014; 9(7):e100871. DOI:10.1371/journal.pone.0100871 · 3.23 Impact Factor
  • Source
    • "Maturation of human MDDC with IL-3 and IL-4 led to higher expression of MHC molecules on dexosomes when compared to GM-CSF/IL-4 treated DC but the immunogenicity in vitro remained unchanged [35]. In contrast, BMDC generated in the presence of GM-CSF and IL-10 secreted dexosomes with immunosuppressive characteristics and capable of dampening inflammation in an arthritis model [36] "
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years exosomes have emerged as potent stimulators of immune responses and as agents for cancer therapy. Exosomes can carry a broad variety of immunostimulatory molecules depending on the cell of origin and in vitro culture conditions. Dendritic cell-derived exosomes (dexosomes) have been shown to carry NK cell activating ligands and can be loaded with antigen to activate invariant NKT cells and to induce antigen-specific T and B cell responses. Dexosomes have been investigated as therapeutic agents against cancer in two phase I clinical trials, with a phase II clinical trial currently ongoing. Dexosomes were well tolerated but therapeutic success and immune activation were limited. Several reports suggest that multiple factors need to be considered in order to improve exosomal immunogenicity for cancer immunotherapy. These include antigen-loading strategies, exosome composition and exosomal trafficking in vivo. Hence, a better understanding of how to engineer and deliver exosomes to specific cells is crucial to generate strong immune responses and to improve the immunotherapeutic potential of exosomes.
    Seminars in Cancer Biology 05/2014; 28(1). DOI:10.1016/j.semcancer.2014.05.003 · 9.33 Impact Factor
Show more