Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy.

Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark.
The Journal of Immunology (Impact Factor: 5.36). 06/2005; 174(10):6332-9. DOI: 10.4049/jimmunol.174.10.6332
Source: PubMed

ABSTRACT Previously we have shown that Ag85B-ESAT-6 is a highly efficient vaccine against tuberculosis. However, because the ESAT-6 Ag is also an extremely valuable diagnostic reagent, finding a vaccine as effective as Ag85B-ESAT-6 that does not contain ESAT-6 is a high priority. Recently, we identified a novel protein expressed by Mycobacterium tuberculosis designated TB10.4. In most infected humans, TB10.4 is strongly recognized, raising interest in TB10.4 as a potential vaccine candidate and substitute for ESAT-6. We have now examined the vaccine potential of this protein and found that vaccination with TB10.4 induced a significant protection against tuberculosis. Fusing Ag85B to TB10.4 produced an even more effective vaccine, which induced protection against tuberculosis comparable to bacillus Calmette-Guerin vaccination and superior to the individual Ag components. Thus, Ag85B-TB10 represents a new promising vaccine candidate against tuberculosis. Furthermore, having now exchanged ESAT-6 for TB10.4, we show that ESAT-6, apart from being an excellent diagnostic reagent, can also be used as a reagent for monitoring vaccine efficacy. This may open a new way for monitoring vaccine efficacy in clinical trials.

Download full-text


Available from: Timothy Mark Doherty, Jul 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With almost a dozen vaccine candidates in clinical trials, tuberculosis (TB) research and development is finally reaping the first fruits of its labors. Vaccine candidates in clinical trials may prevent TB disease reactivation by efficiently containing the pathogen Mycobacterium tuberculosis (Mtb). Future research should target vaccines that achieve sterile eradication of Mtb or even prevent stable infection. These are ambitious goals that can be reached only by highly cooperative engagement of basic immunologists, vaccinologists, and clinical researchers--or in other words, by translation from basic immunology to vaccine research and development, as well as reverse translation of insights from clinical trials back to hypothesis-driven research in the basic laboratory. Here, we review current and future strategies toward the rational design of novel vaccines against TB, as well as the progress made thus far, and the hurdles that need to be overcome in the near and distant future.
    Immunity 10/2010; 33(4):567-77. DOI:10.1016/j.immuni.2010.09.015 · 19.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The attempts to find an effective antituberculous subunit vaccine are based on the assumption that it must drive a Th1 response. In the absence of effective correlates of protection, a vast array of mycobacterial components are being evaluated worldwide either on the basis of their ability to be recognized by T lymphocytes in in vitro assays during early stage of animal or human infection (antigenicity) or their capacity to induce T cell response following immunization in animal models (immunogenicity). The putative vaccine candidates selected using either of these strategies are then subjected to challenge studies in different animal models to evaluate the protective efficacy. Here we review the outcome of this current scheme of selection of vaccine candidates using an 'antigenicity' or 'immunogenicity' criterion on the actual protective efficacy observed in experimental animal models. The possible implications for the success of some of the leading vaccine candidates in clinical trials will also be discussed.
    Clinical Immunology 04/2007; 122(3):239-51. DOI:10.1016/j.clim.2006.10.010 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attempts to develop peptide vaccines, based on a limited number of peptides face two problems: HLA polymorphism and the high mutation rate of viral epitopes. We have developed a new genomic method that ensures maximal coverage and thus maximal applicability of the peptide vaccine. The same method also promises a large number of epitopes per HLA to prevent escape via mutations. Our design can be applied swiftly in order to face rapidly emerging viral diseases. We use a genomic scan of all candidate peptides and join them optimally. For a given virus, we use algorithms computing: peptide cleavage probability, transfer through TAP and MHC binding for a large number of HLA alleles. The resulting peptide libraries are pruned for peptides that are not conserved or are too similar to self peptides. We then use a genetic algorithm to produce an optimal protein composed of peptides from this list properly ordered for cleavage. The selected peptides represent an optimal combination to cover all HLA alleles and all viral proteins. We have applied this method to HCV and found that some HCV proteins (mainly envelope proteins) represent much less peptide than expected. A more detailed analysis of the peptide variability shows a balance between the attempts of the immune system to detect less mutating peptides, and the attempts of viruses to mutate peptides and avoid detection by the immune system. In order to show the applicability of our method, we have further used it on HIV-I, Influenza H3N2 and the Avian Flu Viruses.
    Molecular Immunology 03/2007; 44(6):1253-61. DOI:10.1016/j.molimm.2006.06.003 · 3.00 Impact Factor