Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells.

Department of Biochemistry and Medical Biotechnologies, Federico II University, Via S. Pansini 5, 80131 Naples, Italy.
Blood (Impact Factor: 9.78). 09/2005; 106(4):1400-6. DOI: 10.1182/blood-2005-03-0929
Source: PubMed

ABSTRACT The phosphatidyl-inositol 3 kinase (PI3k)/Akt pathway has been implicated in childhood acute lymphoblastic leukemia (ALL). Because rapamycin suppresses the oncogenic processes sustained by PI3k/Akt, we investigated whether rapamycin affects blast survival. We found that rapamycin induces apoptosis of blasts in 56% of the bone marrow samples analyzed. Using the PI3k inhibitor wortmannin, we show that the PI3k/Akt pathway is involved in blast survival. Moreover, rapamycin increased doxorubicin-induced apoptosis even in nonresponder samples. Anthracyclines activate nuclear factor kappaB (NF-kappaB), and disruption of this signaling pathway increases the efficacy of apoptogenic stimuli. Rapamycin inhibited doxorubicin-induced NF-kappaB in ALL samples. Using a short interfering (si) RNA approach, we demonstrate that FKBP51, a large immunophilin inhibited by rapamycin, is essential for drug-induced NF-kappaB activation in human leukemia. Furthermore, rapamycin did not increase doxorubicin-induced apoptosis when NF-kappaB was overexpressed. In conclusion, rapamycin targets 2 pathways that are crucial for cell survival and chemoresistance of malignant lymphoblasts--PI3k/Akt through the mammalian target of rapamycin and NF-kappaB through FKBP51--suggesting that the drug could be beneficial in the treatment of childhood ALL.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapamycin has been shown to inhibit the growth of leukemic cells via an unknown mechanism. In our current study, we show that rapamycin activates autophagy in pediatric t(1;19) pre-B acute lymphoblastic leukemia (pre-B ALL) cells and thereby inhibits proliferation and induces growth arrest in these cells. Rapamycin was found to downregulate an extensive array of positive cell cycle regulators, reduce the total DNA and RNA levels, and specifically downregulate the gene transcription of DNA pol δ1 and RNA pol II. Furthermore, we show that both rapamycin and starvation caused a downregulation of the DNA pol δ1 and RNA pol II proteins which was reversed by the autophagy inhibitor 3-MA. Consistent with the results of our autophagic flux analysis, confocal microscopy indicated that both rapamycin and starvation cause the colocalization of DNA pol δ1 and RNA pol II with GFP-LC3 at autophagosomes. This colocalization was blocked by the autophagy inhibitor bafilomycin A1 which inhibits the fusion between autophagosomes and lysosomes. These data suggest that rapamycin inhibits the growth of pediatric t(1;19) pre-B ALL cells through both transcriptional inhibition and autophagic degradation of DNA pol δ1 and RNA pol II.
    Leukemia Research 05/2014; · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases. Even if the prognosis of T-ALL has improved especially in the childhood due to the use of new intensified treatment protocols, the outcome of relapsed patients who are resistant to conventional chemotherapeutic drugs or who relapse is still poor. For this reason, there is a need for novel and less toxic targeted therapies against signaling pathways aberrantly activated in T-ALL, such as the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR). Small molecules designed to target key components of this signaling axis have proven their efficacy both in vitro and in vivo in pre-clinical settings of T-ALL. In particular, different classes of mTOR inhibitors have been disclosed by pharmaceutical companies, and they are currently being tested in clinical trials for treating T-ALL patients. One of the most promising approaches for the treatment of T-ALL seems to be the combination of mTOR inhibitors with traditional chemotherapeutic agents. This could lead to a lower drug dosage that may circumvent the systemic side effects of chemotherapeutics. In this review, we focus on the different classes of mTOR inhibitors that will possibly have an impact on the therapeutic arsenal we have at our disposal against T-ALL.
    International Journal of Oncology 06/2014; · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: B cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common type of cancer in children. Dramatic improvements in primary therapy for childhood ALL have led to an overall cure rate of 80 %, providing opportunities for innovative combined-modality strategies that would increase cure rates while reducing the toxic side effects of current intensive regimens. In this study, we report that indole-3-carbinol (I3C), a natural phytochemical found in cruciferous vegetables, had anti-leukemic properties in BCP-ALL NALM-6 cells. I3C induced cell growth inhibition by G1 cell cycle arrest and triggered apoptosis in a dose- and time-dependent manner. p53, p21, and Bax proteins showed increased expression after I3C treatment. Real-time PCR analysis of pro-apoptotic p53 target genes revealed up-regulation of PUMA, NOXA, and Apaf-1. I3C also suppressed constitutive nuclear factor-κB (NF-κB) activation and inhibited the protein expression of NF-kappa B-regulated antiapoptotic (IAP1, Bcl-xL, Bcl-2, XIAP) and proliferative (c-Myc) gene products. Coadministration of I3C with the topoisomerase II inhibitor, doxorubicin, potentiates cytotoxic effects compared with either agent alone. Apoptosis induction by the drug combination was associated with enhanced caspase-9 activation and PARP cleavage. Furthermore, I3C abolished doxorubicin-induced NF-κB activity as evidenced by decreased nuclear accumulation of p65, inhibition of IκBα phosphorylation and its degradation, and decreased NF-κB DNA-binding activity. Western blot analysis revealed that doxorubicin-induced Bcl-2 protein expression was inhibited by I3C. Overall, our results indicated that using nontoxic agents, such as I3C, in combination with anthracyclines might provide a new insight into the development of novel combination therapies in childhood BCP-ALL.
    Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 01/2015;