Article

Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO).

Tufts-New England Medical Center, Boston, Massachusetts 02111, USA.
Kidney International (Impact Factor: 8.52). 07/2005; 67(6):2089-100. DOI: 10.1111/j.1523-1755.2005.00365.x
Source: PubMed

ABSTRACT Chronic kidney disease (CKD) is a worldwide public health problem, with adverse outcomes of kidney failure, cardiovascular disease (CVD), and premature death. A simple definition and classification of kidney disease is necessary for international development and implementation of clinical practice guidelines. Kidney Disease: Improving Global Outcomes (KDIGO) conducted a survey and sponsored a controversies conference to (1) provide a clear understanding to both the nephrology and nonnephrology communities of the evidence base for the definition and classification recommended by Kidney Disease Quality Outcome Initiative (K/DOQI), (2) develop global consensus for the adoption of a simple definition and classification system, and (3) identify a collaborative research agenda and plan that would improve the evidence base and facilitate implementation of the definition and classification of CKD. The K/DOQI definition and classification were accepted, with clarifications. CKD is defined as kidney damage or glomerular filtration rate (GFR) <60 mL/min/1.73 m(2) for 3 months or more, irrespective of cause. Kidney damage in many kidney diseases can be ascertained by the presence of albuminuria, defined as albumin-to-creatinine ratio >30 mg/g in two of three spot urine specimens. GFR can be estimated from calibrated serum creatinine and estimating equations, such as the Modification of Diet in Renal Disease (MDRD) Study equation or the Cockcroft-Gault formula. Kidney disease severity is classified into five stages according to the level of GFR. Kidney disease treatment by dialysis and transplantation should be noted. Simple, uniform classifications of CKD by cause and by risks for kidney disease progression and CVD should be developed.

2 Bookmarks
 · 
188 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aspirin overdose, though now infrequently encountered, nevertheless continues to contribute to significant morbidity and mortality. The patient described in this case report intentionally ingested overdoses of aspirin on repeated occasions. The case provided an unusual and possibly one-of-a-kind opportunity to focus on the variability in the time course of plasma salicylate concentrations with current treatment modalities of aspirin overdose in an individual patient. A 75-year-old Caucasian man who weighed 45kg and had an extensive history of various drug overdoses and stage 3 chronic kidney disease presented to a tertiary university hospital on three occasions within 2 months after successive overdoses of aspirin. During his third admission, he overdosed with aspirin, while on the ward recovering from the previous aspirin overdose. The overdoses were categorized as "potentially lethal" on two occasions and as "serious" in the other two, based on the alleged dose of aspirin ingested (over 500mg/kg in the first two overdoses, and 320mg/kg and 498mg/kg in the other two, respectively). However, as assessed by the observed salicylate concentrations, the ingestions would more appropriately have been categorized as being of "moderate" severity for the first and second overdose and "mild" severity for each of the others. This categorization was more consistent with the clinical severity of his admissions. A single dose of activated charcoal was administered only after the second overdose. On each occasion, he was given intravenous fluid with the aim of achieving euvolemia. Urinary alkalization was not attempted during the first admission, which was associated with the longest apparent elimination half-life of salicylate (30 hours). A plasma potassium concentration of approximately 4mmol/L appeared to be needed for adequate urinary alkalization. In a patient with impaired renal function, intravenous fluid and urinary alkalization are the mainstays of treatment of aspirin overdose. Correction of hypokalemia is recommended. Repeated doses of charcoal may be a worthwhile intervention when there is no risk of aspiration. Our experience in this case also revealed considerable unexplained variation in management despite the availability of guidelines. It is, therefore, important to monitor the implementation of available guidelines.
    Journal of Medical Case Reports 11/2014; 8(1):374.
  • Journal of Functional Foods 04/2013; 5(2):810-819. · 4.48 Impact Factor
  • Source
    Progress in Health Sciences. 01/2014; 4(1):53-60.

Full-text (3 Sources)

Download
559 Downloads
Available from
May 19, 2014