Alternative Gnas gene products have opposite effects on glucose and lipid metabolism.

Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2005; 102(20):7386-91. DOI: 10.1073/pnas.0408268102
Source: PubMed

ABSTRACT Gnas is an imprinted gene with multiple gene products resulting from alternative splicing of different first exons onto a common exon 2. These products include stimulatory G protein alpha-subunit (G(s)alpha), the G protein required for receptor-stimulated cAMP production; extralarge G(s)alpha (XLalphas), a paternally expressed G(s)alpha isoform; and neuroendocrine-specific protein (NESP55), a maternally expressed chromogranin-like protein. G(s)alpha undergoes tissue-specific imprinting, being expressed primarily from the maternal allele in certain tissues. Heterozygous mutation of exon 2 on the maternal (E2m-/+) or paternal (E2+/p-) allele results in opposite effects on energy metabolism. E2m-/+ mice are obese and hypometabolic, whereas E2+/p- mice are lean and hypermetabolic. We now studied the effects of G(s)alpha deficiency without disrupting other Gnas gene products by deleting G(s)alpha exon 1 (E1). E1+/p- mice lacked the E2+/p- phenotype and developed obesity and insulin resistance. The lean, hypermetabolic, and insulin-sensitive E2+/p- phenotype appears to result from XLalphas deficiency, whereas loss of paternal-specific G(s)alpha expression in E1+/p- mice leads to an opposite metabolic phenotype. Thus, alternative Gnas gene products have opposing effects on glucose and lipid metabolism. Like E2m-/+ mice, E1m-/+ mice had s.c. edema at birth, presumably due to loss of maternal G(s)alpha expression. However, E1m-/+ mice differed from E2m-/+ mice in other respects, raising the possibility for the presence of other maternal-specific gene products. E1m-/+ mice had more severe obesity and insulin resistance and lower metabolic rate relative to E1+/p- mice. Differences between E1m-/+ and E1+/p- mice presumably result from differential effects on G(s)alpha expression in tissues where G(s)alpha is normally imprinted.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progressive osseous heteroplasia (POH) is an ultrarare genetic condition of progressive ectopic ossification. Most cases of POH are caused by heterozygous inactivating mutations of GNAS, the gene encoding the alpha subunit of the G-stimulatory protein of adenylyl cyclase. POH is part of a spectrum of related genetic disorders, including Albright hereditary osteodystrophy, pseudohypoparathyroidism, and primary osteoma cutis, that share common features of superficial ossification and association with inactivating mutations of GNAS. The genetics, diagnostic criteria, supporting clinical features, current management, and prognosis of POH are reviewed here, and emerging therapeutic strategies are discussed.
    The Application of Clinical Genetics 01/2015; 8:37-48. DOI:10.2147/TACG.S51064
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Mouse chromosome 2 is linked to growth and body fat phenotypes in many mouse crosses. With the goal to identify the underlying genes regulating growth and body fat on mouse chromosome 2, we developed five overlapping subcongenic strains that contained CAST/EiJ donor regions in a C57BL/6J hg/hg background (hg is a spontaneous deletion of 500 Kb on mouse chromosome 10). To fine map QTL on distal mouse chromosome 2 a total of 1,712 F2 mice from the five subcongenic strains, plus 278 F2 mice from the HG2D founder congenic strain were phenotyped and analyzed. Interval mapping (IM) and composite IM (CIM) were performed on body weight and body fat traits on a combination of SNP and microsatellite markers, which generated a high-density genotyping panel.ResultsPhenotypic analysis and interval mapping of total fat mass identified two QTL on distal mouse chromosome 2. One QTL between 150 and 161 Mb, Fatq2a, and the second between 173.3 and 175.6 Mb, Fatq2b. The two QTL reside in different congenic strains with significant total fat differences between homozygous cast/cast and b6/b6 littermates. Both of these QTL were previously identified only as a single QTL affecting body fat, Fatq2. Furthermore, through a novel approach referred here as replicated CIM, Fatq2b was mapped to the Gnas imprinted locus.Conclusions The integration of subcongenic strains, high-density genotyping, and CIM succesfully partitioned two previously linked QTL 20 Mb apart, and the strongest QTL, Fatq2b, was fine mapped to a ~2.3 Mb region interval encompassing the Gnas imprinted locus.
    BMC Genomics 01/2015; 16(1):16. DOI:10.1186/s12864-014-1191-8 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Children with pseudohypoparathyroidism type 1a (PHP-1a) develop early-onset obesity. These children have decreased resting energy expenditure but it is unknown if hyperphagia contributes to their obesity. Methods We conducted a survey assessment of patients 2 to 12 years old with PHP-1a and matched controls using the Hyperphagia Questionnaire (HQ) and Children’s Eating Behavior Questionnaire (CEBQ). Results of the PHP-1a group were also compared with an obese control group and normal weight sibling group. Results We enrolled 10 patients with PHP-1a and 9 matched controls. There was not a significant difference between the PHP-1a group and matched controls for total HQ score (p = 0.72), Behavior (p = 0.91), Drive (p = 0.48) or Severity (p = 0.73) subset scores. There was also no difference between the PHP-1a group and matched controls on the CEBQ. In a secondary analysis, the PHP-1a group was compared with obese controls (n = 30) and normal weight siblings (n = 6). Caregivers reported an increased interest in food before age 2 years in 6 of 10 PHP-1a patients (60%), 9 of 30 obese controls (30%) and none of the siblings (p = 0.04). The sibling group had a significantly lower Positive Eating Behavior score than the PHP-1a group (2.6 [2.4, 2.9] vs. 3.5 [3.1, 4.0], p < 0.01) and obese controls (2.6 [2.4, 2.9] vs. 3.4 [2.6, 3.8], p = 0.04), but there was not a significant difference between the PHP-1a and obese controls (p = 0.35). The sibling group had a lower Desire to Drink score than both the PHP-1a group (1.8 [1.6, 2.7] vs. 4.3 [3.3, 5.0], p < 0.01) and obese controls (1.8 [1.6, 2.7] vs. 3.3 [3.0, 4.0], p < 0.01) but there was not a significant difference between the PHP-1a and obese control Desire to Drink scores (p = 0.11). Conclusions Patients with PHP-1a demonstrate hyperphagic symptoms similar to matched obese controls.
    International Journal of Pediatric Endocrinology 10/2014; 2014(1):21. DOI:10.1186/1687-9856-2014-21

Full-text (2 Sources)

Available from
Jun 1, 2014