Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection

Harvard University, Cambridge, Massachusetts, United States
Human Molecular Genetics (Impact Factor: 6.68). 08/2005; 14(13):1709-25. DOI: 10.1093/hmg/ddi178
Source: PubMed

ABSTRACT Molecular differences between dopamine (DA) neurons may explain why the mesostriatal DA neurons in the A9 region preferentially degenerate in Parkinson's disease (PD) and toxic models, whereas the adjacent A10 region mesolimbic and mesocortical DA neurons are relatively spared. To characterize innate physiological differences between A9 and A10 DA neurons, we determined gene expression profiles in these neurons in the adult mouse by laser capture microdissection, microarray analysis and real-time PCR. We found 42 genes relatively elevated in A9 DA neurons, whereas 61 genes were elevated in A10 DA neurons [> 2-fold; false discovery rate (FDR) < 1%]. Genes of interest for further functional analysis were selected by criteria of (i) fold differences in gene expression, (ii) real-time PCR validation and (iii) potential roles in neurotoxic or protective biochemical pathways. Three A9-elevated molecules [G-protein coupled inwardly rectifying K channel 2 (GIRK2), adenine nucleotide translocator 2 (ANT-2) and the growth factor IGF-1] and three A10-elevated peptides (GRP, CGRP and PACAP) were further examined in both alpha-synuclein overexpressing PC12 (PC12-alphaSyn) cells and rat primary ventral mesencephalic (VM) cultures exposed to MPP+ neurotoxicity. GIRK2-positive DA neurons were more vulnerable to MPP+ toxicity and overexpression of GIRK2 increased the vulnerability of PC12-alphaSyn cells to the toxin. Blocking of ANT decreased vulnerability to MPP+ in both cell culture systems. Exposing cells to IGF-1, GRP and PACAP decreased vulnerability of both cell types to MPP+, whereas CGRP protected PC12-alphaSyn cells but not primary VM DA neurons. These results indicate that certain differentially expressed molecules in A9 and A10 DA neurons may play key roles in their relative vulnerability to toxins and PD.


Available from: Ole Isacson, May 30, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson disease (PD) is characterized by the preferential, but poorly understood, vulnerability to degeneration of midbrain dopaminergic (mDA) neurons in the ventral substantia nigra compacta (vSNc). These sensitive mDA neurons express Pitx3, a transcription factor that is critical for their survival during development. We used this dependence to identify, by flow cytometry and expression profiling, the negative regulator of G-protein signaling Rgs6 for its restricted expression in these neurons. In contrast to Pitx3-/- mDA neurons that die during fetal (vSNc) or post-natal (VTA) period, the vSNc mDA neurons of Rgs6-/- mutant mice begin to exhibit unilateral signs of degeneration at around 6 months of age, and by one year cell loss is observed in a fraction of mice. Unilateral cell loss is accompanied by contralateral degenerating neurons that exhibit smaller cell size, altered morphology and reduced dendritic network. The degenerating neurons have low levels of tyrosine hydroxylase (TH) and decreased nuclear Pitx3; accordingly, expression of many Pitx3 target gene products is altered, including Vmat2, Bdnf, Aldh1a1 (Adh2) and Fgf10. These low TH neurons also express markers of increased dopamine signaling, namely increased DAT and phospho-Erk1/2 expression. The late onset degeneration may reflect the protective action of Rgs6 against excessive DA signaling throughout life. Rgs6-dependent protection is thus critical for adult survival and maintenance of the vSNc mDA neurons that are most affected in PD.
    PLoS Genetics 12/2014; 10(12):e1004863. DOI:10.1371/journal.pgen.1004863 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The axonal voltage-gated calcium channels (VGCCs) that catalyse dopamine (DA) transmission are incompletely defined. Yet, they are critical to DA function and might prime subpopulations of DA neurons for parkinsonian degeneration. Previous studies of VGCCs will have encompassed those on striatal cholinergic interneurons which strongly influence DA transmission. We identify which VGCCs on DA axons govern DA transmission, we determine their dynamic properties, and reveal an underlying basis for differences between caudate-putamen (CPu) and nucleus accumbens (NAc). We detected DA release evoked electrically during nicotinic receptor blockade or optogenetically by light-activation of channel-rhodopsin-expressing DA axons in mouse striatal slices. Subtype-specific VGCC blockers indicated that N, Q, T and L-VGCCs govern DA release in CPu, but in NAc, T and L-channels are relatively silent. The roles of the most dominant channels were inversely frequency-dependent, due to low-pass filtering of DA release by Ca2+-dependent relationships between initial release probability and short-term plasticity. Ca2+ concentration-response curves revealed that differences between CPu and NAc were due to greater underlying Ca2+-sensitivity of DA transmission from CPu axons. Functions for ‘silent’ L- and T-channels in NAc could be unmasked by elevating extracellular [Ca2+]. Furthermore, we identified a greater coupling between BAPTA-sensitive, fast Ca2+ transients and DA transmission in CPu axons, and evidence for endogenous fast buffering of Ca2+ in NAc.This article is protected by copyright. All rights reserved
    The Journal of Physiology 12/2014; 593(4). DOI:10.1113/jphysiol.2014.285890 · 4.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous disorders of the central nervous system (CNS) are attributed to the selective death of distinct neuronal cell populations. Interestingly, in many of these conditions, a specific subset of neurons is extremely prone to degeneration while other, very similar neurons are less affected or even spared for many years. In Parkinson's disease (PD), the motor manifestations are primarily linked to the selective, progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). In contrast, the very similar DA neurons in the ventral tegmental area (VTA) demonstrate a much lower degree of degeneration. Elucidating the molecular mechanisms underlying the phenomenon of differential DA vulnerability in PD has proven extremely challenging. Moreover, an increasing number of studies demonstrate that considerable molecular and electrophysiologic heterogeneity exists among the DA neurons within the SNpc as well as those within the VTA, adding yet another layer of complexity to the selective DA vulnerability observed in PD. The discovery of key pathways that regulate this differential susceptibility of DA neurons to degeneration holds great potential for the discovery of novel drug targets and the development of promising neuroprotective treatment strategies. This review provides an update on the molecular basis of the differential vulnerability of midbrain DA neurons in PD and highlights the most recent developments in this field.
    Frontiers in Neuroanatomy 12/2014; 8:152. DOI:10.3389/fnana.2014.00152 · 4.18 Impact Factor