Article

Signaling pathways in the nitric oxide and iron-induced dopamine release in the striatum of freely moving rats: role of extracellular Ca2+ and L-type Ca2+ channels.

Department of Pharmacology, University of Sassari, viale S.Pietro 43B, 07100 Sassari, Italy.
Brain Research (Impact Factor: 2.88). 07/2005; 1047(1):18-29. DOI: 10.1016/j.brainres.2005.04.008
Source: PubMed

ABSTRACT We showed previously that exogenous iron potentiated nitric oxide (NO) donor-induced release of striatal dopamine (DA) in freely moving rats, using microdialysis. In this study, the increase in dialysate DA induced by intrastriatal infusion of the NO-donor 3-morpholinosydnonimine (SIN-1, 1.0 mM for 180 min) was scarcely affected by Ca2+ omission. N-methyl-d-glucamine dithiocarbamate (MGD) is a thiol compound whose NO trapping activity is potentiated by iron(II). Intrastriatal co-infusion of MGD either alone or associated with iron(II), however, potentiated SIN-1-induced increases in dialysate DA. In contrast, co-infusion of the NO trapper 4-(carboxyphenyl)-4,4,5,5-tetramethylimidazole-1-oxyl 3-oxide (carboxy-PTIO) significantly attenuated the increase in dialysate DA induced by SIN-1 (5.0 mM for 180 min). SIN-1+MGD+iron(II)-induced increases in dialysate DA were inhibited by Ca2+ omission or co-infusion of either deferoxamine or the L-type (Ca(v) 1.1-1.3) Ca2+ channel inhibitor nifedipine; in contrast, the increase was scarcely affected by co-infusion of the N-type (Ca(v) 2.2) Ca2+ channel inhibitor omega-conotoxin GVIA. These results demonstrate that exogenous NO-induced release of striatal DA is independent on extracellular Ca2+; however, in presence of the NO trapper MGD, NO may preferentially react with either endogenous or exogenous iron to form a complex which releases striatal DA with an extracellular Ca2+-dependent and nifedipine-sensitive mechanism.

0 Bookmarks
 · 
68 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dysfunction of neuronal signal processing and transmission occurs after subarachnoid hemorrhage (SAH) and contributes to the high morbidity and mortality of this pathology. The underlying mechanisms include early brain injury due to elevation of the intracranial pressure, disruption of the blood-brain barrier, brain edema, reduction of cerebral blood flow, and neuronal cell death. Direct influence of subarachnoid blood metabolites on neuronal signaling should be considered. After SAH, some metabolites were shown to directly induce disruption of neuronal integrity and neuronal signaling, whereas the effects of other metabolites on neurotoxicity and neuronal signaling have not yet been investigated. Therefore, this mini-review will discuss recent evidence for a direct influence of subarachnoid blood and its metabolites on neuronal function.
    Acta Neurochirurgica 11/2012; · 1.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Experimental models based on the increase of dopaminergic neurotransmission mimic behavioral and neurochemical schizophrenia-like aspects. Psychostimulants, as amphetamine, are used with this purpose because they increase extracellular dopamine levels in mesocorticolimbic and mesostriatal pathways. The limitations of direct manipulation uniquely based on the dopamine system in animal models have encouraged the use of new approaches. Nitric oxide (NO), an atypical neurotransmitter which inhibits dopamine reuptake and stimulates its release, seems to modulate dopamine-controlled behaviors. The prepulse inhibition test reveals deficits on the sensorimotor filter found in schizophrenics or after psichotomimetic treatments. This review presents evidences for the interaction between NO and DA systems on schizophrenia models as a new tool for the investigation of this pathology.
    Psicologia : Reflexão e Crítica. 01/2008;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A simple and rapid method was developed for in vivo simultaneous determination of ascorbic-acid and antioxidant capacity in microdialysates from cladodes of Opuntia ficus-indica (L.) Miller. The method is verified in water-stressed plants, as compared with a well-watered test controls. The microdialysis probe construction and insertion procedure was specifically developed to minimise the tissue trauma of the plant and to obtain optimal dialysis performance. Microdialysis was performed using a flow rate of 3μL/min and the samples were analysed by HPLC coupled to electrochemical detection of ascorbic-acid and DPPH-determined antioxidant capacity. Our data indicate exponential decay of the concentrations of the analysed compounds as a function of microdialysis sampling time. Water-stressed Opuntia show decreased ascorbic acid levels and increased the others antioxidants.
    Food Chemistry 03/2014; 147C:131-137. · 3.33 Impact Factor