Intestinal lipoprotein assembly.

Department of Anatomy and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA.
Current Opinion in Lipidology (Impact Factor: 5.8). 07/2005; 16(3):281-5. DOI: 10.1097/01.mol.0000169347.53568.5a
Source: PubMed

ABSTRACT The assembly of intestinal lipoproteins is critical for the transport of fat and fat-soluble vitamins. In this review we propose a nomenclature for these lipoproteins and have summarized recent data about their intracellular assembly and factors that modulate their secretion.
The assembly and secretion of intestinal lipoproteins increases with the augmented synthesis of apoB, apoAIV and lipids. Chylomicron assembly begins with the formation of primordial, phospholipid-rich particles in the membrane, and their conversion to large chylomicrons occurs in the lumen of the smooth endoplasmic reticulum. Chylomicrons are transported from the endoplasmic reticulum via specialized vesicles to the Golgi for secretion. The identification of genetic mutations in chylomicron retention disease indicates that Sar1b may play a critical role in this process. In addition to chylomicron assembly, intestinal cells have been shown to transport dietary cholesterol via apoB-independent pathways, such as efflux.
Understanding the mechanisms involved in the intracellular transport of chylomicrons and chylomicron-independent secretion pathways are expected to be the next frontiers in the field of intestinal lipoprotein assembly and secretion.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microsomal triglyceride transfer protein (MTP) is needed to assemble chylomicrons in the endoplasmic reticulum (ER) of enterocytes. We explored the role of an ER stress protein, inositol-requiring enzyme 1beta (IRE1beta), in regulating this process. High-cholesterol and high-fat diets decreased intestinal IRE1beta mRNA in wild-type mice. Ire1b(-/-) mice fed high-cholesterol and high-fat diets developed more pronounced hyperlipidemia because these mice secreted more chylomicrons and expressed more intestinal MTP, though not hepatic MTP, than wild-type mice did. Chylomicron secretion and MTP expression also were increased in primary enterocytes isolated from cholesterol-fed Ire1b(-/-) mice. There was no correlation between ER stress and MTP expression. Instead, cell culture studies revealed that IRE1beta, but not its ubiquitous homolog IRE1alpha, decreased MTP mRNA through increased posttranscriptional degradation. Conversely, knockdown of IRE1beta enhanced MTP expression. These studies show that IRE1beta plays a role in regulating MTP and in chylomicron production.
    Cell metabolism 06/2008; 7(5):445-55. DOI:10.1016/j.cmet.2008.03.005 · 16.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: La proprotéine convertase subtilisine/kexine type 9 (PCSK9) favorise la dégradation post-transcriptionnelle du récepteur des lipoprotéines de faible densité (LDLr) dans les hépatocytes et augmente le LDL-cholestérol dans le plasma. Cependant, il n’est pas clair si la PCSK9 joue un rôle dans l’intestin. Dans cette étude, nous caractérisons les variations de la PCSK9 et du LDLr dans les cellules Caco-2/15 différentiées en fonction d’une variété d’effecteurs potentiels. Le cholestérol (100 µM) lié à l’albumine ou présenté en micelles a réduit de façon significative l’expression génique (30%, p<0,05) et l’expression protéique (50%, p<0,05) de la PCSK9. Étonnamment, une diminution similaire dans le LDLr protéique a été enregistrée (45%, p<0,05). Les cellules traitées avec le 25-hydroxycholestérol (50 µM) présentent également des réductions significatives dans l’ARNm (37%, p<0,01) et la protéine (75%, p<0,001) de la PCSK9. Une baisse des expressions génique (30%, p<0,05) et protéique (57%, p<0,01) a également été constatée dans le LDLr. Des diminutions ont aussi été observées pour la HMG CoA réductase et la protéine liant l’élément de réponse aux stérols SREBP-2. Il a été démontré que le SREBP-2 peut activer transcriptionnellement la PCSK9 par le biais de la liaison de SREBP-2 à son élément de réponse aux stérols situé dans la région proximale du promoteur de la PCSK9. Inversement, la déplétion du contenu cellulaire en cholestérol par l’hydroxypropyl-β-cyclodextrine a augmenté l’expression génique de la PCSK9 (20%, p<0,05) et son contenu protéique (540%, p<0,001), en parallèle avec les niveaux protéiques de SREBP-2. L’ajout des acides biliaires taurocholate et déoxycholate dans le milieu apical des cellules intestinales Caco-2/15 a provoqué une baisse d’expression génique (30%, p<0,01) et une hausse d’expression protéique (43%, p<0,01) de la PCSK9 respectivement, probablement via la modulation du FXR (farnesoid X receptor). Ces données combinées semblent donc indiquer que la PCSK9 fonctionne comme un senseur de stérols dans le petit intestin. Proprotein convertase subtilisin/kexin type 9 (PCSK9) posttranslationally promotes the degradation of the low-density lipoprotein receptor (LDLr) in hepatocytes and increases plasma LDL cholesterol. It is not clear, however, whether PCSK9 plays a role in the small intestine. Here, we characterized the patterns of variations of PCSK9 and LDLr in fully differentiated Caco-2/15 cells as a function of various potential effectors. Cholesterol (100 µM) solubilised in albumin or micelles significantly down-regulated PCSK9 gene (30%, p<0,05) and protein expression (50%, p<0,05), surprisingly in concert with a decrease in LDLr protein levels (45%, p<0,05). 25-hydroxycholesterol (50 µM) treated cells also displayed significant reduction in PCSK9 gene (37 %, p<0,01) and protein (75% p<0,001) expression, while LDLr showed a decrease at the gene (30%, p< 0,05) and protein (57%, p<0,01) levels, respectively. The amounts of PCSK9 mRNA and protein in Caco-2/15 cells were associated to the regulation of HMG-CoA reductase and sterol regulatory element binding protein-2 (SREBP-2) that can transcriptionally activate PCSK9 via sterol-regulatory elements located in its proximal promoter region. On the other hand, depletion of cholesterol content by hydroxypropyl-β-cyclodextrine up-regulated PCSK9 transcripts (20%, p<0,05) and protein mass (540%, p<0,001), in parallel with SREBP-2 protein levels. The addition of bile acids, taurocholate and deoxycholate, to the apical culture medium lowered PCSK9 gene expression (30%, p<0,01) and raised PCSK9 protein expression (43%, p<0,01) respectively, probably via the modulation of farnesoid X receptor. Combined, these data indicate that PCSK9 functions as a sensor of sterol in the small intestine.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The global population is getting obese. From developed to developing countries the pandemic is now irrefutable. Research focusing on obesity has increased exponentially over the past few decades but yet no solution has been found. Dietary fat has been blamed for this epidemic because people adapted to a high-fat diet develop hyperphagic behavior and therefore become obese. The aim of this work was to understand the mechanisms by which a high-fat diet can induce hyperphagia starting from behavorial studies to the molecular biology behind it. These studies have been conducted in two animal models: Rattus norvegicus and Mus musculus. The results of these studies have shown that rats subjected to a chronic high-fat diet become hyperphagic upon vagal insensitivity to dietary fat compared to rats fed a low-fat diet. Also, we demonstrated that the cholecystokinin receptor 1 plays an important role in the detection of dietary fat. Finally, we proposed a molecular model of the adaptation of the nodose ganglia by which a decreased expression of the leptin receptor (anorexigenic) was associated with an increased expression of the cannabinoid receptor (orexigenic). This suggests one of the many mechanisms underlying hyperphagic behavior in rats fed a chronic high-fat diet. In conclusion, we have shown that diet is able to interact with genes involved in short-term regulation of food intake. These findings are critical in understanding the potential causes of obesity. The human genome has evolved from the direct interaction between environment and diet; it is not counterintuitive to think that diet can influence gene expression. Why does a high-fat diet induce a hyperphagic response in the organism? Can we find answers by looking back in time and observe how people, diet and environment evolved together? Does the thrifty gene theory make sense in this context? These are questions that need to be answered in order to find a solution to obesity. Acknowledgements 2 table of contents 4 background 5 introduction 9 chapter 1 28 adaptation to dietary fat 28 chapter 2 49 adaptation of lipid-induced satiation is not dependent on caloric density in rats 49 chapter 3 84 cck1 receptor is essential for normal meal patterning in mice fed high fat diet 84 chapter 4 107 adaptation to a high fat diet alters the normal receptors expression involved in the detection of dietary fat 107 chapter 5 137 future experiments 137 conclusion 142 references 144