Article

PU.1 protein expression has a positive linear association with protein expression of germinal centre B cell genes including BCL-6, CD10, CD20 and CD22: identification of PU.1 putative binding sites in the BCL-6 promotor.

Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway.
The Journal of Pathology (Impact Factor: 7.59). 08/2005; 206(3):312-9. DOI: 10.1002/path.1777
Source: PubMed

ABSTRACT The transcription factor PU.1 has been shown to be crucial for the early stages of B cell development but its function at later stages of B cell development is less well known. We observed previously that PU.1 is expressed uniformly throughout the mature pre-plasma cell B cell population, the only exception being a subpopulation of germinal centre (GC) cells which showed exceptionally high expression of PU.1. This suggested that PU.1 may also have a role in GC B cell biology. To test this hypothesis and to screen for possible genes regulated by PU.1, we first evaluated semi-quantitatively the possible co-expression of PU.1 with proteins known to be upregulated or downregulated during GC B cell development. Normal lymphoid tissues and 255 B cell non-Hodgkin lymphomas of putative GC B cell origin were evaluated. PU.1 expression was positively associated with CD10 (p < 0.0001), CD20 (p = 0.043), CD22 (p = 0.005), CD79a (p = 0.024) and Bcl-6 (p < 0.0001) and negatively associated with cytoplasmic immunoglobulin light-chain expression (p = 0.036) in diffuse large B cell lymphoma. Identical or nearly identical associations were found in follicular lymphoma. Since CD20 is known to be partly regulated by PU.1 and putative PU.1-binding sites have been described in the regulatory regions of the CD22, CD79a and CD10 genes, we looked for putative PU.1 binding sites in the BCL6 promotor. Four such putative PU.1 binding sites were identified. Further analysis by gel-shift electromobility essay showed that PU.1 protein binds to three of the four putative binding sites in the BCL6 promotor. PU.1 and Bcl-6 were also found to be upregulated in centroblasts in the normal GC, but jointly downregulated in a subpopulation of centrocytes. Our findings support the contention that PU.1 may also have an important role in GC B cell development.

0 Bookmarks
 · 
69 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell-surface protein CD10 is a prognostic marker for diffuse large B-cell lymphoma (DLBCL), where high expression of CD10 is found in the germinal center B-cell (GCB) subtype and CD10 expression is low or absent in the activated B-cell (ABC) subtype. As compared with the GCB subtype, patients with ABC DLBCL have a poorer prognosis after standard treatment, and ABC tumor cells have higher NF-κB activity. Herein, we show that increased expression of the NF-κB target micro-RNA miR-155 is correlated with reduced expression of transcription factor PU.1 and CD10 in several B-lymphoma cell lines. Moreover, electromobility shift assays and luciferase reporter assays indicate that PU.1 can directly activate expression from the CD10 promoter. Expression of a DLBCL-derived mutant of the adaptor CARD11 (a constitutive activator of NF-κB) in the GCB-like human BJAB cell line or v-Rel in the chicken DT40 B-lymphoma cell line causes reduced expression of PU.1. The CARD11 mutant also causes a decrease in CD10 levels in BJAB cells. Similarly, overexpression of miR-155, which is known to down-regulate PU.1, leads to reduced expression of CD10 in BJAB cells. Finally, we show that CD10 expression is reduced in BJAB cells after treatment with the NF-κB inducer lipopolysaccharide (LPS). Additionally, miR-155 is induced by LPS treatment or expression of the CARD11 mutant in BJAB cells. These results point to an NF-κB-dependent mechanism for down-regulation of CD10 in B-cell lymphoma: namely, that increased NF-κB activity leads to increased miR-155, which results in decreased PU.1, and consequently reduced CD10 mRNA and protein.
    Journal of Biological Chemistry 10/2010; 286(3):1675-82. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone morphogenetic protein (BMP) expression and signaling are altered in a variety of cancers, but the functional impact of these alterations is uncertain. In this study we investigated the impact of expression of multiple BMPs and their signaling pathway components in human B-cell lymphoma. BMP messages, in particular BMP7, were detected in normal and malignant B cells. Addition of exogenous BMPs inhibited DNA synthesis in most lymphoma cell lines examined, but some cell lines were resistant. Tumor specimens from three out of five lymphoma patients were also resistant to BMPs, as determined by no activation of the BMP effectors Smad1/5/8. We have previously shown that BMP-7 potently induced apoptosis in normal B cells, which was in contrast to no or little inhibitory effect of this BMP in the lymphoma cells tested. BMP-resistance mechanisms were investigated by comparing sensitive and resistant cell lines. While BMP receptors are downregulated in many cancers, we documented similar receptor levels in resistant and sensitive lymphoma cells. We found a positive correlation between activation of Smad1/5/8 and inhibition of DNA synthesis. Gene expression analysis of two independent data sets showed that the levels of inhibitory Smads varied across different B-cell lymphoma. Furthermore, stable overexpression of Smad7 in two different BMP-sensitive cell lines with low endogenous levels of SMAD7, rendered them completely resistant to BMPs. This work highlights the role of Smads in determining the sensitivity to BMPs and shows that upregulation of Smad7 in cancer cells is sufficient to escape the negative effects of BMPs.
    PLoS ONE 01/2012; 7(10):e46117. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BCL6 is a transcriptional repressor crucial for germinal center formation. BCL6 represses transcription by a variety of mechanisms by binding to specific DNA sequences or by recruitment to DNA by protein interactions. We found that BCL6 can inhibit activities of the immunoglobulin kappa (Igkappa) intron and 3' enhancers. At the Igkappa 3' enhancer, BCL6 repressed enhancer activity through the PU.1 binding site. We found that BCL6 physically interacted with PU.1 in vivo and in vitro, and the results of sequential chromatin immunoprecipitation assays and transient-expression assays suggested that BCL6 recruitment to the Igkappa and Iglambda 3' enhancers occurred via PU.1 interaction. By computational studies, we identified genes that are repressed in germinal center cells and whose promoters contain conserved PU.1 binding sites in mouse and human. We found that many of these promoters bound to both PU.1 and BCL6 in vivo. In addition, BCL6 knockdown resulted in increased expression of a subset of these genes, demonstrating that BCL6 is involved in their repression. The recruitment of BCL6 to promoter regions by PU.1 represents a new regulatory mechanism that expands the number of genes regulated by this important transcriptional repressor.
    Molecular and cellular biology 07/2009; 29(17):4612-22. · 6.06 Impact Factor