Article

Measurement of Single Macromolecule Orientation by Total Internal Reflection Fluorescence Polarization Microscopy

Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania, Philadelphia, 19104-6083, USA.
Biophysical Journal (Impact Factor: 3.83). 09/2005; 89(2):1261-71. DOI: 10.1529/biophysj.104.053470
Source: PubMed

ABSTRACT A new approach is presented for measuring the three-dimensional orientation of individual macromolecules using single molecule fluorescence polarization (SMFP) microscopy. The technique uses the unique polarizations of evanescent waves generated by total internal reflection to excite the dipole moment of individual fluorophores. To evaluate the new SMFP technique, single molecule orientation measurements from sparsely labeled F-actin are compared to ensemble-averaged orientation data from similarly prepared densely labeled F-actin. Standard deviations of the SMFP measurements taken at 40 ms time intervals indicate that the uncertainty for individual measurements of axial and azimuthal angles is approximately 10 degrees at 40 ms time resolution. Comparison with ensemble data shows there are no substantial systematic errors associated with the single molecule measurements. In addition to evaluating the technique, the data also provide a new measurement of the torsional rigidity of F-actin. These measurements support the smaller of two values of the torsional rigidity of F-actin previously reported.

Download full-text

Full-text

Available from: Margot E Quinlan, Apr 23, 2014
1 Follower
 · 
59 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The experimental study of individual macromolecules has opened a door to determining the details of their mechanochemical operation. Motor enzymes such as the myosin family have been particularly attractive targets for such study, in part because some of them are highly processive and their "product" is spatial motion. But single-molecule resolution comes with its own costs and limitations. Often, the observations rest on single fluorescent dye molecules, which emit a limited number of photons before photobleaching and are subject to complex internal dynamics. Thus, it is important to develop methods that extract the maximum useful information from a finite set of detected photons. We have extended an experimental technique, multiple polarization illumination in total internal reflection fluorescence microscopy (polTIRF), to record the arrival time and polarization state of each individual detected photon. We also extended an analysis technique, previously applied to FRET experiments, that optimally determines times of changes in photon emission rates. Combining these improvements allows us to identify the structural dynamics of a molecular motor (myosin V) with unprecedented detail and temporal resolution.
    Methods in enzymology 01/2011; 487:431-63. DOI:10.1016/B978-0-12-381270-4.00015-9 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myosin VI is an unconventional motor protein with unusual motility properties such as its direction of motion and path on actin and a large stride relative to its short lever arms. To understand these features, the rotational dynamics of the lever arm were studied by single-molecule polarized total internal reflection fluorescence (polTIRF) microscopy during processive motility of myosin VI along actin. The axial angle is distributed in two peaks, consistent with the hand-over-hand model. The changes in lever arm angles during discrete steps suggest that it exhibits large and variable tilting in the plane of actin and to the sides. These motions imply that, in addition to the previously suggested flexible tail domain, there is a compliant region between the motor domain and lever arm that allows myosin VI to accommodate the helical position of binding sites while taking variable step sizes along the actin filament.
    Molecular Cell 01/2008; 28(6):954-64. DOI:10.1016/j.molcel.2007.10.029 · 14.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed two types of high-speed angle-resolved imaging methods for single gold nanorods (SAuNRs) using objective-type vertical illumination dark-field microscopy and a high-speed CMOS camera to achieve microsecond temporal and one-degree angle resolution. These methods are based on: (i) an intensity analysis of focused images of SAuNR split into two orthogonally polarized components and (ii) the analysis of defocused SAuNR images. We determined the angle precision (statistical error) and accuracy (systematic error) of the resultant SAuNR (80 nm × 40 nm) images projected onto a substrate surface (azimuthal angle) in both methods. Although both methods showed a similar precision of ∼1° for the azimuthal angle at a 10 μs temporal resolution, the defocused image analysis showed a superior angle accuracy of ∼5°. In addition, the polar angle was also determined from the defocused SAuNR images with a precision of ∼1°, by fitting with simulated images. By taking advantage of the defocused image method's full revolution measurement range in the azimuthal angle, the rotation of the rotary molecular motor, F1-ATPase, was measured with 3.3 μs temporal resolution. The time constants of the pauses waiting for the elementary steps of the ATP hydrolysis reaction and the torque generated in the mechanical steps have been successfully estimated. The high-speed angle-resolved SAuNR imaging methods will be applicable to the monitoring of the fast conformational changes of many biological molecular machines.
    Analytical Chemistry 02/2015; 87(4). DOI:10.1021/ac502408c · 5.83 Impact Factor