Article

Inhibition of amyloid precursor protein processing by β-secretase through site-directed antibodies

Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2005; 102(21):7718-23. DOI: 10.1073/pnas.0502427102
Source: PubMed

ABSTRACT Amyloid-beta peptide (AbetaP) that accumulates in the Alzheimer's diseased brain is derived from proteolytic processing of the amyloid precursor protein (APP) by means of beta- and gamma-secretases. The beta-secretase APP cleaving enzyme (BACE), which generates the N terminus of AbetaP, has become a target of intense research aimed at blocking the enzyme activity, thus reducing AbetaP and, subsequently, plaque formation. The search for specific inhibitors of beta-secretase activity as a possible treatment for Alzheimer's disease intensified with the discovery that BACE may be involved in processing other non-APP substrates. The presence of the APP-BACE complex in early endosomes highlights the cell surface as a potential therapeutic target, suggesting that interference in APP-BACE interaction at the cell surface may affect amyloid-beta production. We present here a unique approach to inhibit AbetaP production by means of antibodies against the beta-secretase cleavage site of APP. These antibodies were found to bind human APP overexpressed by CHO cells, and the formed immunocomplex was visualized in the early endosomes. Indeed, blocking of the beta-secretase site by these antibodies interfered with BACE activity and inhibited both intracellular and extracellular AbetaP formation in these cells.

Download full-text

Full-text

Available from: Beka Solomon, Dec 12, 2013
0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease is characterized pathologically by extracellular senile plaques, intracellular neurofibrillary tangles, and granulovacuolar degeneration. It has been debated whether these hallmark lesions are markers or mediators of disease progression, and numerous paradigms have been proposed to explain the appearance of each lesion individually. However, the unfaltering predictability of these lesions suggests a single pathological nidus central to disease onset and progression. One of the earliest pathologies observed in Alzheimer's disease is endocytic dysfunction. Here we review the recent literature of endocytic dysfunction with particular focus on disrupted lysosomal fusion and propose it as a unifying hypothesis for the three most-studied lesions of Alzheimer's disease.
    08/2012; 2012:752894. DOI:10.1155/2012/752894
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the major form of age-related dementia and is characterized by progressive cognitive impairment, the accumulation of extracellular amyloid β-peptide (Aβ), and intracellular hyperphosphorylated tau aggregates in affected brain regions. Tau hyperphosphorylation and accumulation in neurofibrillary tangles is strongly correlated with cognitive deficits, and is apparently a critical event in the dementia process because mutations in tau can cause a tangle-only form of dementia called frontotemporal lobe dementia. Among kinases that phosphorylate tau, glycogen synthase kinase 3β (GSK3β) is strongly implicated in AD pathogenesis. In the present study, we established an ELISA to screen for agents that inhibit GSK3β activity and found that the flavonoid morin effectively inhibited GSK3β activity and blocked GSK3β-induced tau phosphorylation in vitro. In addition, morin attenuated Aβ-induced tau phosphorylation and protected human neuroblastoma cells against Aβ cytotoxicity. Furthermore, treatment of 3xTg-AD mice with morin resulted in reductions in tau hyperphosphorylation and paired helical filament-like immunoreactivity in hippocampal neurons. Morin is a novel inhibitor of GSK3β that can reduce tau pathology in vivo and may have potential as a therapeutic agent in tauopathies.
    Neurobiology of Disease 07/2011; 44(2):223-30. DOI:10.1016/j.nbd.2011.07.005 · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the progress of the past two decades, the cause of Alzheimer's disease (AD) and effective treatments against it remain elusive. The hypothesis that amyloid-β (Aβ) peptides are the primary causative agents of AD retains significant support among researchers. Nonetheless, a growing body of evidence shows that Aβ peptides are unlikely to be the sole factor in AD etiology. Evidence that Aβ/amyloid-independent factors, including the actions of AD-related genes, also contribute significantly to AD pathogenesis was presented in a symposium at the 2010 Annual Meeting of the Society for Neuroscience. Here we summarize the studies showing how amyloid-independent mechanisms cause defective endo-lysosomal trafficking, altered intracellular signaling cascades, or impaired neurotransmitter release and contribute to synaptic dysfunction and/or neurodegeneration, leading to dementia in AD. A view of AD pathogenesis that encompasses both the amyloid-dependent and -independent mechanisms will help fill the gaps in our knowledge and reconcile the findings that cannot be explained solely by the amyloid hypothesis.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 11/2010; 30(45):14946-54. DOI:10.1523/JNEUROSCI.4305-10.2010 · 6.75 Impact Factor