POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome.

Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
Journal of Medical Genetics (Impact Factor: 5.7). 01/2006; 42(12):907-12. DOI: 10.1136/jmg.2005.031963
Source: PubMed

ABSTRACT Walker-Warburg syndrome (WWS) is an autosomal recessive condition characterised by congenital muscular dystrophy, structural brain defects, and eye malformations. Typical brain abnormalities are hydrocephalus, lissencephaly, agenesis of the corpus callosum, fusion of the hemispheres, cerebellar hypoplasia, and neuronal overmigration, which causes a cobblestone cortex. Ocular abnormalities include cataract, microphthalmia, buphthalmos, and Peters anomaly. WWS patients show defective O-glycosylation of alpha-dystroglycan (alpha-DG), which plays a key role in bridging the cytoskeleton of muscle and CNS cells with extracellular matrix proteins, important for muscle integrity and neuronal migration. In 20% of the WWS patients, hypoglycosylation results from mutations in either the protein O-mannosyltransferase 1 (POMT1), fukutin, or fukutin related protein (FKRP) genes. The other genes for this highly heterogeneous disorder remain to be identified.
To look for mutations in POMT2 as a cause of WWS, as both POMT1 and POMT2 are required to achieve protein O-mannosyltransferase activity.
A candidate gene approach combined with homozygosity mapping.
Homozygosity was found for the POMT2 locus at 14q24.3 in four of 11 consanguineous WWS families. Homozygous POMT2 mutations were present in two of these families as well as in one patient from another cohort of six WWS families. Immunohistochemistry in muscle showed severely reduced levels of glycosylated alpha-DG, which is consistent with the postulated role for POMT2 in the O-mannosylation pathway.
A fourth causative gene for WWS was uncovered. These genes account for approximately one third of the WWS cases. Several more genes are anticipated, which are likely to play a role in glycosylation of alpha-DG.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several types of muscular dystrophy are caused by defective linkage between α-dystroglycan (α-DG) and laminin. Among these, dystroglycanopathy, including Fukuyama-type congenital muscular dystrophy (FCMD), results from abnormal glycosylation of α-DG. Recent studies have shown that like-acetylglucosaminyltransferase (LARGE) strongly enhances the laminin binding activity of α-DG. Therefore, restoration of the α-DG-laminin linkage by LARGE is considered one of the most promising possible therapies for muscular dystrophy. In this study, we generated transgenic mice that overexpress LARGE (LARGE Tg) and crossed them with dy(2 J) mice and fukutin conditional knockout mice, a model for laminin α2-deficient congenital muscular dystrophy (MDC1A) and FCMD, respectively. Remarkably, in both strains, the transgenic overexpression of LARGE resulted in an aggravation of muscular dystrophy. Using morphometric analyses, we found that the deterioration of muscle pathology was caused by suppression of muscle regeneration. Overexpression of LARGE in C2C12 cells further demonstrated defects in myotube formation. Interestingly, a decreased expression of insulin-like growth factor 1 (IGF-1) was identified in both LARGE Tg mice and LARGE-overexpressing C2C12 myotubes. Supplementing the C2C12 cells with IGF-1 restored the defective myotube formation. Taken together, our findings indicate that the overexpression of LARGE aggravates muscular dystrophy by suppressing the muscle regeneration and this adverse effect is mediated via reduced expression of IGF-1.
    Human Molecular Genetics 04/2014; · 7.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple genes (e.g., POMT1, POMT2, POMGnT1, ISPD, GTDC2, B3GALNT2, FKTN, FKRP, and LARGE) are known to be involved in the glycosylation pathway of α-dystroglycan (α-DG). Mutations of these genes result in muscular dystrophies with wide phenotypic variability. Abnormal glycosylation of α-DG with decreased extracellular ligand binding activity is a common biochemical feature of these genetic diseases. While it is known that LARGE overexpression can compensate for defects in a few aforementioned genes, it is unclear whether it can also rescue defects in FKRP function. We examined adeno-associated virus (AAV) mediated LARGE or FKRP overexpression in two dystrophic mouse models with loss-of-function mutations: 1) Largemyd (LARGE gene); and 2) FKRPP448L (FKRP gene). The results agree with previous findings that overexpression of LARGE can ameliorate the dystrophic phenotypes of Largemyd mice. In addition, LARGE overexpression in the FKRPP448L mice effectively generated functional glycosylation (hyperglycosylation) of α-DG and improved dystrophic pathologies in treated muscles. Conversely, FKRP transgene overexpression failed to rescue the defect in glycosylation and improve the phenotypes of the Largemyd mice. Our findings suggest that AAV-mediated LARGE gene therapy may still be a viable therapeutic strategy for dystroglycanopathies with FKRP deficiency.
    Human Gene Therapy Methods 03/2014; · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Congenital muscular dystrophies (CMDs) are early onset disorders of muscle with histological features suggesting a dystrophic process. The congenital muscular dystrophies as a group encompass great clinical and genetic heterogeneity so that achieving an accurate genetic diagnosis has become increasingly challenging, even in the age of next generation sequencing. In this document we review the diagnostic features, differential diagnostic considerations and available diagnostic tools for the various CMD subtypes and provide a systematic guide to the use of these resources for achieving an accurate molecular diagnosis. An International Committee on the Standard of Care for Congenital Muscular Dystrophies composed of experts on various aspects relevant to the CMDs performed a review of the available literature as well as of the unpublished expertise represented by the members of the committee and their contacts. This process was refined by two rounds of online surveys and followed by a three-day meeting at which the conclusions were presented and further refined. The combined consensus summarized in this document allows the physician to recognize the presence of a CMD in a child with weakness based on history, clinical examination, muscle biopsy results, and imaging. It will be helpful in suspecting a specific CMD subtype in order to prioritize testing to arrive at a final genetic diagnosis.
    Neuromuscular Disorders 01/2014; · 3.46 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014