Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode

Department of Psychiatry, University of Geneva, Genève, Geneva, Switzerland
Neuropsychobiology (Impact Factor: 2.3). 02/2005; 51(4):234-8. DOI: 10.1159/000085725
Source: PubMed

ABSTRACT We had previously reported decreased serum brain-derived neurotrophic factor (BDNF) levels in depressed patients. In the present study, we tested the hypothesis that antidepressant treatment would normalize serum BDNF levels, at least in a subgroup of patients. Major depressed patients (15 females and 11 males) diagnosed according to DSM-IV criteria and healthy controls (13 females and 13 males) participated in this study. Serum BDNF was assayed with the ELISA method for depressed and remitted patients and the severity of depression was evaluated with the Montgomery-Asberg Depression Rating Scale. An analysis of variance showed that treatment had an effect [F(1, 24) = 4.46, p = 0.045] on the normalization of serum BDNF levels. We also found a correlation between the severity of depression (r = 0.51, p = 0.008), the pretreatment BDNF levels (r = 0.62, p = 0.001) and the difference in serum BDNF levels after antidepressant treatment. These results suggest that antidepressant treatment has a positive effect on serum BDNF levels and support the hypothesis of neurotrophic factor involvement in affective disorders.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depression is a common, recurrent mental illness that affects millions of people worldwide. Recently, a unique fast neuroprotective and antidepressant treatment effect has been observed by ketamine, which acts via the glutamatergic system. Hence, a steady accumulation of evidence supporting a role for the excitatory amino acid neurotransmitter (EAA) glutamate in the treatment of depression has been observed in the last years. Emerging evidence indicates that N-methyl-D-aspartate (NMDA), group 1 metabotropic glutamate receptor antagonists and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) agonists have antidepressant properties. Indeed, treatment with NMDA receptor antagonists has shown the ability to sprout new synaptic connections and reverse stress-induced neuronal changes. Based on glutamatergic signaling, a number of therapeutic drugs might gain interest in the future. Several compounds such as ketamine, memantine, amantadine, tianeptine, pioglitazone, riluzole, lamotrigine, AZD6765, magnesium, zinc, guanosine, adenosine aniracetam, traxoprodil (CP-101,606), MK-0657, GLYX-13, NRX-1047, Ro25-6981, LY392098, LY341495, D-cycloserine, D-serine, dextromethorphan, sarcosine, scopolamine, pomaglumetad methionil, LY2140023, LY404039, MGS0039, MPEP, 1-Aminocyclopropanecarboxylic acid all of which target this system have already been brought up, some of them recently. Drugs targeting the glutamatergic system might open up a promising new territory for the development of drugs to meet the needs of patients with major depression. Copyright © 2015. Published by Elsevier Inc.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 03/2015; DOI:10.1016/j.pnpbp.2015.02.015 · 4.03 Impact Factor
  • Acta Biochimica et Biophysica Sinica 12/2014; DOI:10.1093/abbs/gmu117 · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson’s disease, induces a depressive- like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudateputamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/ lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDAinduced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively.
    PLoS ONE 03/2015; 10(3):e0117698. DOI:10.1371/journal.pone.0117698 · 3.53 Impact Factor