Targeted expression of BRAF(V600E) in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation

Department of Pediatrics, University of Chicago, Chicago, Illinois, United States
Cancer Research (Impact Factor: 9.33). 05/2005; 65(10):4238-45. DOI: 10.1158/0008-5472.CAN-05-0047
Source: PubMed


The BRAFT1799A mutation is the most common genetic alteration in papillary thyroid carcinomas (PTC). It is also found in a subset of papillary microcarcinomas, consistent with a role in tumor initiation. PTCs with BRAFT1799A are often invasive and present at a more advanced stage. BRAFT1799A is found with high prevalence in tall-cell variant PTCs and in poorly differentiated and undifferentiated carcinomas arising from PTCs. To explore the role of BRAFV600E in thyroid cancer pathogenesis, we targeted its expression to thyroid cells of transgenic FVB/N mice with a bovine thyroglobulin promoter. Two Tg-BRAFV600E lines (Tg-BRAF2 and Tg-BRAF3) were propagated for detailed analysis. Tg-BRAF2 and Tg-BRAF3 mice had increased thyroid-stimulating hormone levels (>7- and approximately 2-fold, respectively). This likely resulted from decreased expression of thyroid peroxidase, sodium iodine symporter, and thyroglobulin. All lines seemed to successfully compensate for thyroid dysfunction, as serum thyroxine/triiodothyronine and somatic growth were normal. Thyroid glands of transgenic mice were markedly enlarged by 5 weeks of age. In Tg-BRAF2 mice, PTCs were present at 12 and 22 weeks in 14 of 15 and 13 of 14 animals, respectively, with 83% exhibiting tall-cell features, 83% areas of invasion, and 48% foci of poorly differentiated carcinoma. Tg-BRAF3 mice also developed PTCs, albeit with lower prevalence (3 of 12 and 4 of 9 at 12 and 22 weeks, respectively). Tg-BRAF2 mice had a 30% decrease in survival at 5 months. In summary, thyroid-specific expression of BRAFV600E induces goiter and invasive PTC, which transitions to poorly differentiated carcinomas. This closely recapitulates the phenotype of BRAF-positive PTCs in humans and supports a key role for this oncogene in its pathogenesis.

Download full-text


Available from: Norisato Mitsutake, Apr 04, 2014
18 Reads
  • Source
    • "Animal models have contributed to an understanding of the molecular transformation of ATC. The thyroid cancer progression hypothesis is corroborated by a transgenic mouse model for the early activation of the BRAFT1799A oncogene restricted to the thyroid gland (Tg-BRAF) that is affected by high penetrance PTC that undergoes temporal dedifferentiation [13]. Molecular analysis of Tg-BRAF mice-derived tumors reveals the deregulation of TGFβ signaling upon prolonged stimulation of the BRAF oncogene, with enhanced TGFβ signaling transduction and a shift to EMT by ZEB1 and ZEB2 transcription factor activation [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Anaplastic thyroid cancer (ATC) is among the most lethal types of cancers, characterized as a fast-growing and highly invasive thyroid tumor that is unresponsive to surgery and radioiodine, blunting therapeutic efficacy. Classically, genetic alterations in tumor suppressor TP53 are frequent, and cumulative alterations in different signaling pathways, such as MAPK and PI3K, are detected in ATC. Recently, deregulation in microRNAs (miRNAs), a class of small endogenous RNAs that regulate protein expression, has been implicated in tumorigenesis and cancer progression. Deregulation of miRNA expression is detected in thyroid cancer. Upregulation of miRNAs, such as miR-146b, miR-221, and miR-222, is observed in ATC and also in differentiated thyroid cancer (papillary and follicular), indicating that these miRNAs' overexpression is essential in maintaining tumorigenesis. However, specific miRNAs are downregulated in ATC, such as those of the miR-200 and miR-30 families, which are important negative regulators of cell migration, invasion, and epithelial-to-mesenchymal transition (EMT), processes that are overactivated in ATC. Therefore, molecular interference to restore the expression of tumor suppressor miRNAs, or to blunt overexpressed oncogenic miRNAs, is a promising therapeutic approach to ameliorate the treatment of ATC. In this review, we will explore the importance of miRNA deregulation for ATC cell biology.
    International Journal of Endocrinology 08/2014; 2014(743450):1-8. DOI:10.1155/2014/743450 · 1.95 Impact Factor
  • Source
    • "Preclinical studies, through in vitro and in vivo analyses , are providing helpful information in the therapeutic approach of ATC, especially the analysis of the mouse model closely recapitulating the clinic-pathological features of human ATC. While most genetically engineered mouse models gave significant advancements about differentiated thyroid carcinomas, such as PTC [70] [71] [72] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human cancers. Actually, ATC is refractory to conventional therapies, including surgery, chemotherapy, radiotherapy, and radioiodine ((131)I) therapy. Accordingly, genetic and molecular characterizations of ATC have been frequently and periodically reviewed in order to identify potential biological markers exploitable for target therapy. This review briefly focuses on main molecular events that characterize ATC and provides an update about preclinical studies. In addition, the overexpression of transferrin receptor 1 (TfR1/CD71) by neoplastic cells of ATC is emphasized in that it could represent a potential therapeutic target. In this regard, new therapeutic approaches based on the use of monoclonal or recombinant antibodies, or transferrin-gallium-TfR1/CD71 molecular complexes, or lastly small interfering RNAs (siRNAs) are proposed.
    International Journal of Endocrinology 07/2014; 2014:685396. DOI:10.1155/2014/685396 · 1.95 Impact Factor
  • Source
    • "In one study, B-Raf mutation was detected in lymph nodes with metastatic PTC while the primary PTC was negative for the mutation, which suggested the mutation is a late event [29]. On the contrary, in animal models of PTC, the expression of mutant B-Raf V600E alone could initiate the development of PTC [30,31]. A very recent study found that this B-Raf mutation prevalence was 56.9% in 72 PTC cases, and more importantly, the B-Raf V600E allele was detected in 5.1% to 44.7% of samples, suggesting again that B-Raf mutation was a late event [32]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The B-Raf protein is a key signaling molecule in the mitogen activated protein kinase (MAPK) signaling pathway and has been implicated in the pathogenesis of a variety of cancers. An important V600E mutation has been identified and can cause constitutive B-Raf activation. Recent studies have evaluated a variety of small molecule inhibitors targeting B-Raf, including PLX4032/vemurafenib, dabrafenib, LGX818, GDC0879, XL281, ARQ736, PLX3603 (RO5212054), and RAF265. Therapeutic resistance has been identified and various mechanisms described. This review also discussed the current understanding of B-Raf signaling mechanism, methods of mutation detection, treatment strategies as well as potential methods of overcoming therapeutic resistance.
    Journal of Hematology & Oncology 04/2013; 6(1):30. DOI:10.1186/1756-8722-6-30 · 4.81 Impact Factor
Show more