Article

DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase.

Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
Nature (Impact Factor: 42.35). 06/2005; 435(7040):370-3. DOI: 10.1038/nature03615
Source: PubMed

ABSTRACT Helicases are molecular motors that use the energy of nucleoside 5'-triphosphate (NTP) hydrolysis to translocate along a nucleic acid strand and catalyse reactions such as DNA unwinding. The ring-shaped helicase of bacteriophage T7 translocates along single-stranded (ss)DNA at a speed of 130 bases per second; however, T7 helicase slows down nearly tenfold when unwinding the strands of duplex DNA. Here, we report that T7 DNA polymerase, which is unable to catalyse strand displacement DNA synthesis by itself, can increase the unwinding rate to 114 base pairs per second, bringing the helicase up to similar speeds compared to its translocation along ssDNA. The helicase rate of stimulation depends upon the DNA synthesis rate and does not rely on specific interactions between T7 DNA polymerase and the carboxy-terminal residues of T7 helicase. Efficient duplex DNA synthesis is achieved only by the combined action of the helicase and polymerase. The strand displacement DNA synthesis by the DNA polymerase depends on the unwinding activity of the helicase, which provides ssDNA template. The rapid trapping of the ssDNA bases by the DNA synthesis activity of the polymerase in turn drives the helicase to move forward through duplex DNA at speeds similar to those observed along ssDNA.

0 Followers
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Complete, accurate duplication of the genetic material is a prerequisite for successful cell division. Achieving this accuracy is challenging since there are many barriers to replication forks that may cause failure to complete genome duplication or result in possibly catastrophic corruption of the genetic code. One of the most important types of replicative barriers are proteins bound to the template DNA, especially transcription complexes. Removal of these barriers demands energy input to not only separate the DNA strands but also to disrupt the multiple bonds between the protein and DNA. Replicative helicases that unwind the template DNA for polymerases at the fork can displace proteins bound to the template. However, even occasional failures in protein displacement by the replicative helicase could spell disaster. In such circumstances, failure to restart replication could result in incomplete genome duplication. Avoiding incomplete genome duplication via the repair and restart of blocked replication forks also challenges viability since the involvement of recombination enzymes is associated with the risk of genome rearrangements. Organisms have therefore evolved accessory replicative helicases that aid replication fork movement along protein-bound DNA. These helicases reduce the dangers associated with replication blockage by protein-DNA complexes, aiding clearance of blocks and resumption of replication by the same replisome thus circumventing the need for replication repair and restart. This review summarises recent work in bacteria and eukaryotes that has begun to delineate features of accessory replicative helicases and their importance in genome stability.
    Journal of Molecular Biology 10/2014; 426(24). DOI:10.1016/j.jmb.2014.10.001 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By simultaneously measuring DNA synthesis and dNTP hydrolysis, we show that T7 DNA polymerase and T7 gp4 helicase move in sync during leading-strand synthesis, taking one-nucleotide steps and hydrolyzing one dNTP per base-pair unwound/copied. The cooperative catalysis enables the helicase and polymerase to move at a uniformly fast rate without guanine:cytosine (GC) dependency or idling with futile NTP hydrolysis. We show that the helicase and polymerase are located close to the replication fork junction. This architecture enables the polymerase to use its strand-displacement synthesis to increase the unwinding rate, whereas the helicase aids this process by translocating along single-stranded DNA and trapping the unwound bases. Thus, in contrast to the helicase-only unwinding model, our results suggest a model in which the helicase and polymerase are moving in one-nucleotide steps, DNA synthesis drives fork unwinding, and a role of the helicase is to trap the unwound bases and prevent DNA reannealing.
    Cell Reports 03/2014; DOI:10.1016/j.celrep.2014.02.025 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli DNA polymerase IV, encoded by the dinB gene, is a member of the Y family of specialized DNA polymerases. Pol IV is capable of synthesizing past DNA lesions and may help to restart stalled replication forks. However, Pol IV is error-prone, contributing to both DNA damage-induced and stress-induced (adaptive) mutations. Here we demonstrate that Pol IV interacts in vitro with Rep DNA helicase and that this interaction enhances Rep's helicase activity. In addition, Pol IV polymerase activity is stimulated by interacting with Rep, and Pol IV β clamp-binding motif appears to be required for this stimulation. However, neither Rep's helicase activity nor its ability to bind DNA is required for it to stimulate Pol IV's polymerase activity. The interaction between Rep and Pol IV is biologically significant in vivo as Rep enhances Pol IV's mutagenic activity in stationary-phase cells. These data indicate a new role for Rep in contributing to Pol IV-dependent adaptive mutation. This functional interaction also provides new insight into how the cell might control or target Pol IV's mutagenic activity.
    Molecular Microbiology 02/2011; 80(2):524-41. DOI:10.1111/j.1365-2958.2011.07590.x · 5.03 Impact Factor

Preview

Download
0 Downloads
Available from