Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells

Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, Rochester, New York, USA.
Current Opinion in Cell Biology (Impact Factor: 8.74). 07/2005; 17(3):309-15. DOI: 10.1016/
Source: PubMed

ABSTRACT Nonsense-mediated mRNA decay (NMD) generally involves nonsense codon recognition by translating ribosomes at a position approximately 25 nts upstream of a splicing-generated exon junction complex of proteins. As such, NMD provides a means to degrade abnormal mRNAs that encode potentially deleterious truncated proteins. Additionally, an estimated one-third of naturally occurring, alternatively spliced mRNAs is also targeted for NMD. Given the extraordinary frequency of alternative splicing together with data indicating that naturally occurring transcripts other than alternatively spliced mRNAs are likewise targeted for NMD, it is believed that mammalian cells routinely utilize NMD to achieve proper levels of gene expression.


Available from: Fabrice Lejeune, May 30, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nonsense-mediated RNA decay (NMD) represents an established quality control checkpoint for gene expression that protects cells from consequences of gene mutations and errors during RNA biogenesis that lead to premature termination during translation. Characterization of NMD-sensitive transcriptomes has revealed, however, that NMD targets not only aberrant transcripts but also a broad array of mRNA isoforms expressed from many endogenous genes. NMD is thus emerging as a master regulator that drives both fine and coarse adjustments in steady-state RNA levels in the cell. Importantly, while NMD activity is subject to autoregulation as a means to maintain homeostasis, modulation of the pathway by external cues provides a means to reprogram gene expression and drive important biological processes. Finally, the unanticipated observation that transcripts predicted to lack protein-coding capacity are also sensitive to this translation-dependent surveillance mechanism implicates NMD in regulating RNA function in new and diverse ways. © 2015 WILEY Periodicals, Inc.
    BioEssays 03/2015; 37(6). DOI:10.1002/bies.201500007 · 4.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parthenocarpy is a desired trait in fruit crops; it enables fruit set under environmental conditions suboptimal for pollination, and seedless fruits represent a valuable consumer product. We employed TILLING-based screening of a mutant tomato population to find genetic lesions in Aux/IAA9, a negative regulator of the auxin response involved in the control of fruit set. We identified three mutations located in the coding region of this gene, including two single-base substitutions and one single-base deletion, which leads to a frame shift and premature stop codon. The transcription of IAA9 was strongly reduced in the frame-shift mutant, and partial loss of mutated protein activity was evidenced by an in vitro transactivation assay. Whereas missense mutations were predicted to be tolerated and did not cause mutant phenotypes, the frame-shift mutation-induced phenotypes expected for a loss of IAA9 function, including altered axillary shoot growth, reduced leaf compoundness and a strong tendency to produce parthenocarpic fruits. Mutant flowers showed pleiotropic anther cone defects, a phenotype frequently associated with parthenocarpy in tomato and other species. Mutant fruits were larger than those of the seeded control, with higher brix values and similar firmness. Fruit set was higher in the mutant than in wild type in the greenhouse, but lower in the open field. Facultative expression of parthenocarpy indicated that the mutant is suitable for hybrid seed production and for increasing seeds of parental lines. The results highlight the utility of this novel IAA9 allele for exploiting parthenocarpy by breeding tomato adapted to pollination-limiting growth conditions.
    Molecular Breeding 01/2015; 35(1). DOI:10.1007/s11032-015-0222-8 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intron retention is one of the least studied forms of alternative splicing. Through the use of retrovirus and other model systems, it was established many years ago that mRNAs with retained introns are subject to restriction both at the level of nucleocytoplasmic export and cytoplasmic expression. It was also demonstrated that specific cis-acting elements in the mRNA could serve to bypass these restrictions. Here we show that one of these elements, the constitutive transport element (CTE), first identified in the retrovirus MPMV and subsequently in the human NXF1 gene, is a highly conserved element. Using GERP analysis, CTEs with strong primary sequence homology, predicted to display identical secondary structure, were identified in NXF genes from >30 mammalian species. CTEs were also identified in the predicted NXF1 genes of zebrafish and coelacanths. The CTE from the zebrafish NXF1 was shown to function efficiently to achieve expression of mRNA with a retained intron in human cells in conjunction with zebrafish Nxf1 and cofactor Nxt proteins. This demonstrates that all essential functional components for expression of mRNA with retained introns have been conserved from fish to man. © 2015 Wang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
    RNA 01/2015; 21(3). DOI:10.1261/rna.048520.114 · 4.62 Impact Factor