Electromagnetic parameter retrieval from inhomogeneous metamaterials

Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA.
Physical Review E (Impact Factor: 2.33). 04/2005; 71(3 Pt 2B):036617. DOI: 10.1103/PhysRevE.71.036617
Source: PubMed

ABSTRACT We discuss the validity of standard retrieval methods that assign bulk electromagnetic properties, such as the electric permittivity epsilon and the magnetic permeability mu, from calculations of the scattering (S) parameters for finite-thickness samples. S-parameter retrieval methods have recently become the principal means of characterizing artificially structured metamaterials, which, by nature, are inherently inhomogeneous. While the unit cell of a metamaterial can be made considerably smaller than the free space wavelength, there remains a significant variation of the phase across the unit cell at operational frequencies in nearly all metamaterial structures reported to date. In this respect, metamaterials do not rigorously satisfy an effective medium limit and are closer conceptually to photonic crystals. Nevertheless, we show here that a modification of the standard S-parameter retrieval procedure yields physically reasonable values for the retrieved electromagnetic parameters, even when there is significant inhomogeneity within the unit cell of the structure. We thus distinguish a metamaterial regime, as opposed to the effective medium or photonic crystal regimes, in which a refractive index can be rigorously established but where the wave impedance can only be approximately defined. We present numerical simulations on typical metamaterial structures to illustrate the modified retrieval algorithm and the impact on the retrieved material parameters. We find that no changes to the standard retrieval procedures are necessary when the inhomogeneous unit cell is symmetric along the propagation axis; however, when the unit cell does not possess this symmetry, a modified procedure--in which a periodic structure is assumed--is required to obtain meaningful electromagnetic material parameters.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel approach to find the effective electric and magnetic parameters of finite periodic structures is proposed. The method uses the reflection coefficients at the interface between a homogenous half-space and the periodic structure of different thicknesses. The reflection data are then approximated by complex exponentials, from which one can deduce the wavenumber, and the effective electric and magnetic properties of the equivalent structure by a simple comparison to the geometrical series representation of the generalized reflection from a homogenous slab. Since the effective parameters are for the homogenous equivalent of the periodic structure, the results obtained are expected to be independent of the number of unit cells used in the longitudinal direction. Although the proposed method is quite versatile and applicable to any finite periodic structure, photonic crystals and metamaterials with metallic inclusions have been used to demonstrate the application of the method in this paper.
    IEEE Transactions on Microwave Theory and Techniques 07/2008; 56(6-56):1423 - 1434. DOI:10.1109/TMTT.2008.923870 · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we derive quasi-static equivalent-circuit models for the analysis and design of different types of artificial magnetic resonators-i.e., the multiple split-ring resonator, spiral resonator, and labyrinth resonator-which represent popular inclusions to synthesize artificial materials and metamaterials with anomalous values of the permeability in the microwave and millimeter-wave frequency ranges. The proposed models, derived in terms of equivalent circuits, represent an extension of the models presented in a recent publication. In particular, the extended models take into account the presence of a dielectric substrate hosting the metallic inclusions and the losses due to the finite conductivity of the conductors and the finite resistivity of the dielectrics. Exploiting these circuit models, it is possible to accurately predict not only the resonant frequency of the individual inclusions, but also their quality factor and the relative permeability of metamaterial samples made by given arrangements of such inclusions. Finally, the three models have been tested against full-wave simulations and measurements, showing a good accuracy. This result opens the door to a quick and accurate design of the artificial magnetic inclusions to fabricate real-life metamaterial samples with anomalous values of the permeability.
    IEEE Transactions on Microwave Theory and Techniques 01/2008; DOI:10.1109/TMTT.2007.909611 · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The problem of definition of effective material parameters (permittivity and permeability) for composite layers containing only one-two parallel arrays of complex-shaped inclusions is discussed. Such structures are of high importance for the design of novel metamaterials, where the realizable layers quite often have only one or two layers of particles across the sample thickness. Effective parameters which describe the averaged induced polarizations are introduced. As an explicit example, we develop an analytical model suitable for calculation of the effective material parameters $\epsilon_{\rm{eff}}$ and $\mu_{\rm{eff}}$ for double arrays of electrically small electrically polarizable scatterers. Electric and magnetic dipole moments induced in the structure and the corresponding reflection and transmission coefficients are calculated using the local field approach for the normal plane-wave incidence, and effective parameters are introduced through the averaged fields and polarizations. In the absence of losses both material parameters are purely real and satisfy the Kramers-Kronig relations and the second law of thermodynamics. We compare the analytical results to the simulated and experimental results available in the literature. The physical meaning of the introduced parameters is discussed in detail. Comment: 6 pages, 5 figures
    Journal of Applied Physics 03/2007; 101(11). DOI:10.1063/1.2743817 · 2.19 Impact Factor


Available from