Article

Electromagnetic parameter retrieval from inhomogeneous metamaterials.

Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA.
Physical Review E (Impact Factor: 2.33). 04/2005; 71(3 Pt 2B):036617. DOI: 10.1103/PhysRevE.71.036617
Source: PubMed

ABSTRACT We discuss the validity of standard retrieval methods that assign bulk electromagnetic properties, such as the electric permittivity epsilon and the magnetic permeability mu, from calculations of the scattering (S) parameters for finite-thickness samples. S-parameter retrieval methods have recently become the principal means of characterizing artificially structured metamaterials, which, by nature, are inherently inhomogeneous. While the unit cell of a metamaterial can be made considerably smaller than the free space wavelength, there remains a significant variation of the phase across the unit cell at operational frequencies in nearly all metamaterial structures reported to date. In this respect, metamaterials do not rigorously satisfy an effective medium limit and are closer conceptually to photonic crystals. Nevertheless, we show here that a modification of the standard S-parameter retrieval procedure yields physically reasonable values for the retrieved electromagnetic parameters, even when there is significant inhomogeneity within the unit cell of the structure. We thus distinguish a metamaterial regime, as opposed to the effective medium or photonic crystal regimes, in which a refractive index can be rigorously established but where the wave impedance can only be approximately defined. We present numerical simulations on typical metamaterial structures to illustrate the modified retrieval algorithm and the impact on the retrieved material parameters. We find that no changes to the standard retrieval procedures are necessary when the inhomogeneous unit cell is symmetric along the propagation axis; however, when the unit cell does not possess this symmetry, a modified procedure--in which a periodic structure is assumed--is required to obtain meaningful electromagnetic material parameters.

1 Follower
 · 
291 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a new approach to control the amplitude and phase distributions of electromagnetic fields over the aperture of a horn antenna. By loading a metamaterial lens inside the horn antenna, a tapered amplitude distribution of the aperture field is achieved, which can suppress the side-lobe radiations of the antenna. The metamaterial is further manipulated to achieve a flat phase distribution on the horn aperture to avoid the gain reduction that usually suffers in the conventional low-sidelobe antenna designs. A prototype of the metamaterial-loaded horn antenna is designed and fabricated. Both numerical simulations and measured results demonstrate the tapered aperture-field distribution and significant reduction of side-lobe and back-lobe radiations in the operating frequency band.
    Scientific Reports 03/2015; 5:9113. DOI:10.1038/srep09113 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Those researchers who are part of the metamaterials community stand at a fork in the road – does the maturation of metamaterial fabrication lead to a focus on applications and technology, or does it suggest an opportunity to pursue more blue-sky scientific concepts? At Metamaterials 2013 in Bordeuax, one speaker focussed explicitly on the opportunities for applications and funding on the road leading to metamaterial technology. Here, in deliberate contrast, we look instead at the interesting opportunities in curiosity-led research based around the ideas of transformation and metamaterials. The genesis of this article was the Transforming Transformation Optics meeting held at Imperial College London in December 2013.
    Photonics and Nanostructures - Fundamentals and Applications 04/2015; 89. DOI:10.1016/j.photonics.2015.04.005 · 1.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A general metallic mirror (i.e., a flat metallic surface) has been a popular optical component that can contribute broadband light absorption to thin-film optoelectronic devices; nonetheless, such electric mirror with a reversal of reflection phase inevitably causes the problem of minimized electric field near at the mirror surface (maximized electric field at one quarter of wavelength from mirror). This problem becomes more elucidated, when the deep-subwavelength-scaled two-dimensional (2D) material (e.g., graphene and molybdenum disulfide) is implemented into optoelectronic device as an active channel layer. The purpose of this work was to conceive the idea for using a charge storage layer (spherical Au nanoparticles (AuNPs), embedded into dielectric matrix) of the floating-gate graphene photodetector as a magnetic mirror, which allows the device to harness the increase in broadband light absorption. In particular, we systematically examined whether the versatile assembly of spherical AuNP monolayer within a dielectric matrix (i.e., optical metamaterial mirror), which should be designed to be placed right below the graphene channel layer for floating-gate device, can be indeed treated as the effective magnetic mirror. In addition to being capable of the enhancement of broadband light absorption, versatile access to various structural motifs of AuNPs benefitting from recent advances in chemical synthesis promises compelling opportunities for sophisticated engineering of optical metamaterial mirror. High amenability of the AuNP assembly with the semiconductor-related procedures may make this strategy widely applicable to various thin film optoelectronic devices. Our study thereby illustrates advantages in advancing the design of mirror for rational engineering of light-matter interaction within deep-subwavelength-scaled optoelectronic devices.

Preview

Download
9 Downloads
Available from