Article

Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia.

Consiglio Nazionale delle Ricerche-Institute of Neuroscience, Cellular and Molecular Pharmacology and Department of Medical Pharmacology, University of Milan, Italy.
The Journal of Immunology (Impact Factor: 5.52). 07/2005; 174(11):7268-77.
Source: PubMed

ABSTRACT ATP has been indicated as a primary factor in microglial response to brain injury and inflammation. By acting on different purinergic receptors 2, ATP is known to induce chemotaxis and stimulate the release of several cytokines from these cells. The activation of purinergic receptors 2 in microglia can be triggered either by ATP deriving from dying cells, at sites of brain injury or by ATP released from astrocytes, in the absence of cell damage. By the use of a biochemical approach integrated with video microscopy experiments, we investigated the functional consequences triggered in microglia by ATP released from mechanically stimulated astrocytes, in mixed glial cocultures. Astrocyte-derived ATP induced in nearby microglia the formation and the shedding of membrane vesicles. Vesicle formation was inhibited by the ATP-degrading enzyme apyrase or by P2X(7)R antagonists. Isolation of shed vesicles, followed by IL-1beta evaluation by a specific ELISA revealed the presence of the cytokine inside the vesicular organelles and its subsequent efflux into the extracellular medium. IL-1beta efflux from shed vesicles was enhanced by ATP stimulation and inhibited by pretreatment with the P2X(7) antagonist oxidized ATP, thus indicating a crucial involvement of the pore-forming P2X(7)R in the release of the cytokine. Our data identify astrocyte-derived ATP as the endogenous factor responsible for microvesicle shedding in microglia and reveal the mechanisms by which astrocyte-derived ATP triggers IL-1beta release from these cells.

0 Bookmarks
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microparticles (MPs) are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μ m. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS) have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer's disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS.
    BioMed Research International 01/2014; 2014:756327. · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-1α and interleukin-1β aggravate neuronal injury by mediating the inflammatory reaction following ischemic/hypoxic brain injury. It remains unclear whether interleukin-1α and interleukin-1β are released by microglia or astrocytes. This study prepared hippocampal slices that were subsequently subjected to oxygen and glucose deprivation. Hematoxylin-eosin staining verified that neurons exhibited hypoxic changes. Results of enzyme-linked immunosorbent assay found that interleukin-1α and interleukin-1β participated in this hypoxic process. Moreover, when hypoxic injury occurred in the hippocampus, the release of interleukin-1α and interleukin-1β was mediated by the P2X4 receptor and P2X7 receptor. Immunofluorescence staining revealed that during ischemia/hypoxia, the P2X4 receptor, P2X7 receptor, interleukin-1α and interleukin-1β expression was detectable in rat hippocampal microglia, but only P2X4 receptor and P2X7 receptor expression was detected in astrocytes. Results suggested that the P2X4 receptor and P2X7 receptor, respectively, mediated interleukin-1α and interleukin-1β released by microglia, resulting in hippocampal ischemic/hypoxic injury. Astrocytes were activated, but did not synthesize or release interleukin-1α and interleukin-1β.
    Neural Regeneration Research 05/2013; 8(13):1157-68. · 0.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular vesicles (EVs) are released from many cell types, including normal and pathological cells, and range from 30 to 1000nm in size. Once thought to be a mechanism for discarding unwanted cellular material, EVs are now thought to play a role in intercellular communication. Evidence is accruing that EVs are capable of carrying mRNAs, miRNAs, noncoding RNAs, and proteins, including those associated with neurodegenerative diseases and cancer, which may be exchanged between cells. For this reason, neurodegenerative diseases and cancers may share a common mechanism of disease spread via EVs. Understanding the role EVs play in disease initiation and progression will aid in the discovery of new clinically relevant biomarkers and the development of better targeted molecular and biological therapies.
    Trends in Molecular Medicine 05/2014; · 9.57 Impact Factor

Full-text (2 Sources)

Download
23 Downloads
Available from
Jun 6, 2014