Electrospray ionization mass spectrometry fingerprinting of beer.

Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, UNICAMP, Campinas, SP 13083-970, Brazil.
The Analyst (Impact Factor: 3.97). 07/2005; 130(6):884-9. DOI: 10.1039/b415252b
Source: PubMed

ABSTRACT After just simple degassing, dilution, pH adjustment and direct flow injection, characteristic fingerprint spectra of beer samples have been obtained by fast (few seconds) electrospray ionization mass spectrometry (ESI-MS) analysis in both the negative and positive ion modes. A total of 29 samples belonging to the two main beer types (lagers and ales) and several beer subtypes from USA, Europe and Brazil could be clearly divided into three groups both by simple visual inspection of their ESI(+)-MS and ESI(-)-MS fingerprints as well as by chemometric treatment of the MS data. Diagnostic ions with contrasting relative abundances in both the positive and negative ion modes allow classification of beers into three major types: P = pale (light) colored (pilsener, pale ale), D = dark colored (bock, stout, porter, mild ale) and M = malt beer. For M beers, samples of a dark and artificially sweetened caramel beer produced in Brazil and known as Malzbiers were used. ESI-MS/MS on these diagnostic beer cations and anions, most of which are characterized as arising from ionization of simple sugars, oligosaccharides, and iso-alpha-acids, yield characteristic tandem mass spectra adding a second and optional MS dimension for improved selectivity for beer characterization by fingerprinting. Direct ESI-MS or ESI-MS/MS analysis can therefore provide fast and reliable fingerprinting characterization of beers, distinguishing between types with different chemical compositions. Other unusual polar components, impurities or additives, as well as fermentation defects or degradation products, could eventually be detected, making the technique promising for beer quality control.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrospray ionization (ESI) mass spectra of hexoses, pentoses, and 2-deoxy-2-fluoro-d-glucose (FDG) were investigated and compared using liquid chromatography/mass spectroscopy (LC/MS). 18F-FDG is one of the most widely used radiopharmaceuticals. This work is aimed at the possible interpretations of ESI mass spectra and at the comparison of various pentoses (arabinose, ribose, xylose), and hexoses (glucose, fructose, galactose, mannose) which can be formed during the 18F-FDG’s synthesis or decomposition. As a result, nine major associates were found in the positive and four in the negative mass spectra of all examined saccharides of which intensities and mass can be used with their retention times to determine the saccharide. M · NH4+ and M · COOH− were identified as the most stable associates.
    Chemical Papers- Slovak Academy of Sciences 11/2008; 62(6):547-552. · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stingless bees are found in many tropical and subtropical regions of the word. The knowledge of the composition of their propolis as well as the plants that are visited as sources of resins is therefore of prime importance. Here the negative ion mode electrospray ionization mass spectrometry [ESI(-)-MS] fingerprints of propolis from various species of native stingless bees from different regions in Brazil are compared to determine their composition patterns. The correlation among the propolis samples was investigated via chemometric analysis. Stachellose Bienen kommen in vielen tropischen und subtropischen Regionen der Welt vor und sind in diesen Regionen wichtige Bestäuber. Nichtsdestotrotz ist die Haltungstechnologie für die meisten Arten Stachelloser Bienen noch auf einem relativ niedrigen Niveau. Obwohl für Brasilien bereits verschiedene Studien zur Nischenüberlappung von einheimischen Bienen mit den eingeführten Honigbienen vorliegen, gibt es nur wenig Informationen zu Pflanzen, die von Stachellosen Bienen als Harzquelle für die Herstellung von Propolis genutzt werden. Propolisproben, die von Imkern in verschiedenen Regionen Brasiliens gewonnen wurden (zusammengestellt in Tab. 1), wurden eingefroren und für die Extraktion zermahlen. Die mazerierten Proben wurden auf einem Schüttler während sieben Tagen in Alkohol extrahiert und anschliessend im negativen Ionenmodus per Elektrospray-Ionisations-Massenspektrometrie [ESI(-)-MS] in einem Q-TOF-Massenspektrometer (Micromass) analysiert. Mittels einer chemometrischen Hauptkomponentenanalyse (PCA) wurden statistisch signifikante Korrelationen in diesen Fingerabdrucksanalysen der Propolisproben aufgedeckt. Abbildung 1 zeigt die PCA-Ergebnisse der ESI(-)-MS Fingerabdrücke von Propolisproben Stachelloser Bienen und von Honigbienen. Die Proben teilen sich anhand ihrer charakteristischen Ionen klar in drei Gruppen auf (Abb. 1 A, B). Abbildung 2 zeigt ESI(-)-MS-Spektren typischer Proben aus jeder dieser Gruppen. Gruppe 1 besteht aus neun Propolisproben, für die die Ionen m/z 371, 373, 401, 453, 455, 469 und 471 für die Gruppierung verantwortlich sind. Diese Ionen sind charakteristisch für Tetragonisca angustula Propolis, die diese Bienen in ganz Brasilien überwiegend von Schinus terebenthifolius sammeln. Gruppe 2 besteht ebenfalls aus neun Propolisproben, mit den Gruppierungsionen m/z 301, 315, 317, 319, 333, and 361. Diese sind für die braune A. mellifera Propolis charakteristisch, die vor allem aus Südbrasilien stammt und in der die Bienen Harze der Araucaria Tanne verarbeiten. Zwei Propolisproben (P. droryana aus São Paulo und P. remota aus Paraná) lagen zwischen diesen beiden Gruppen (Abb. 1A), was darauf hinweist, dass diese Bienen sowohl S. terebenthifolius als auch Araucaria Harze sammelten. Gruppe 3 besteht aus sechs Propolisproben, für die das Hauption (m/z 271) für die Gruppierung verantwortlich zeigt. Dieses ist charakteristisch für rote Robinienpropolis von A. mellifera aus dem Nordosten Brasiliens. Die meisten Fingerabdrücke von Propolisproben der einheimischen Stachellosen Bienen zeigten die für S. terebenthifolius charakteristischen Ionen. Diese in ganz Brasilien vorkommende Pflanze enthält medizinisch wirksame Substanzen und wird häufig von Stachellosen Bienen besucht. Unsere Ergebnisse zeigen, dass S. terebenthifolius eine wichtige Quelle für die Propolisgewinnung darstellt, dass Stachellose Bienen aber auch andere Pflanzen, insbesondere Aurakarien nutzen können. ESI-MS fingerprint–propolis–native stingless bees–Brazilpropolis–spectrométrie de masse par ionization avec électronébulisation–abeille sans aiguillon–Apidae–Meliponini–Brésil– Schinus therebentifolius ESI-MS Fingerabdruck–Propolis–Stachellose Bienen–Brazil
    Apidologie 01/2007; 38(1):93-103. · 2.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extra virgin (EV), the finest and most expensive among all the olive oil grades, is often adulterated by the cheapest and lowest quality ordinary (ON) olive oil. A new methodology is described herein that provides a simple, rapid, and accurate way not only to detect such type of adulteration, but also to distinguish between these olive oil grades (EV and ON). This approach is based on the application of direct infusion electrospray ionization mass spectrometry in the positive ion mode, ESI(+)-MS, followed by the treatment of the MS data via exploratory statistical approaches, PCA (principal component analysis) and HCA (hierarchical clustering analysis). Ten distinct brands of each EV and ON olive oil, acquired at local stores, were analyzed by ESI(+)-MS and the results from HCA and PCA clearly indicated the formation of two distinct groups related to these two categories. For the adulteration study, one brand of each olive oil grade (EV and ON) was selected. The counterfeit samples (a total of 20) were then prepared by adding assorted proportions, from 1 to 20% w/w, with increments of 1% w/w, of the ON to the EV olive oil. The PCA and HCA methodologies, applied to the ESI(+)-MS data from the counterfeit (20) and authentic (10) EV samples, were able to readily detect adulteration, even at levels as low as 1% w/w.
    Rapid Communications in Mass Spectrometry 07/2010; 24(13):1875-80. · 2.51 Impact Factor

Full-text (2 Sources)

Available from
Jun 10, 2014