CLC chloride channels and transporters.

Zentrum für Molekulare Neurobiologie, ZMNH, Universität Hamburg, Falkenried 94, D-20246 Hamburg.
Current Opinion in Neurobiology (Impact Factor: 6.77). 07/2005; 15(3):319-25. DOI: 10.1016/j.conb.2005.05.002
Source: PubMed

ABSTRACT CLC proteins are found in cells from prokaryotes to mammals and perform functions in plasma membranes and intracellular vesicles. Several genetic human diseases and mouse models underscore their broad physiological functions in mammals. These functions range from the control of excitability to transepithelial transport, endocytotic trafficking and acidification of synaptic vesicles. The recent crystallization of bacterial CLC proteins gave surprising insights into CLC Cl(-)-channel permeation and gating and provides an excellent basis for structure-function studies. Surprisingly, the CLC from Escherichia coli functions as a Cl-/H+ exchanger, thus demonstrating the thin line separating transporters and channels.

Download full-text


Available from: Olaf Scheel, Aug 27, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A longstanding hypothesis is that ion channels are present in the membranes of synaptic vesicles and might affect neurotransmitter release. Here we demonstrate that TRPM7, a member of the transient receptor potential (TRP) ion channel family, resides in the membrane of synaptic vesicles of sympathetic neurons, forms molecular complexes with the synaptic vesicle proteins synapsin I and synaptotagmin I, and directly interacts with synaptic vesicular snapin. In sympathetic neurons, changes in TRPM7 levels and channel activity alter acetylcholine release, as measured by EPSP amplitudes and decay times in postsynaptic neurons. TRPM7 affects EPSP quantal size, an intrinsic property of synaptic vesicle release. Targeted peptide interference of TRPM7's interaction with snapin affects the amplitudes and kinetics of postsynaptic EPSPs. Thus, vesicular TRPM7 channel activity is critical to neurotransmitter release in sympathetic neurons.
    Neuron 12/2006; 52(3):485-96. DOI:10.1016/j.neuron.2006.09.033 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CLC-ec1 is a prokaryotic CLC-type Cl(-)/H+ exchange transporter. Little is known about the mechanism of H+ coupling to Cl-. A critical glutamate residue, E148, was previously shown to be required for Cl(-)/H+ exchange by mediating proton transfer between the protein and the extracellular solution. To test whether an analogous H+ acceptor exists near the intracellular side of the protein, we performed a mutagenesis scan of inward-facing carboxyl-bearing residues and identified E203 as the unique residue whose neutralization abolishes H+ coupling to Cl- transport. Glutamate at this position is strictly conserved in all known CLCs of the transporter subclass, while valine is always found here in CLC channels. The x-ray crystal structure of the E203Q mutant is similar to that of the wild-type protein. Cl- transport rate in E203Q is inhibited at neutral pH, and the double mutant, E148A/E203Q, shows maximal Cl- transport, independent of pH, as does the single mutant E148A. The results argue that substrate exchange by CLC-ec1 involves two separate but partially overlapping permeation pathways, one for Cl- and one for H+. These pathways are congruent from the protein's extracellular surface to E148, and they diverge beyond this point toward the intracellular side. This picture demands a transport mechanism fundamentally different from familiar alternating-access schemes.
    The Journal of General Physiology 01/2006; 126(6):563-70. DOI:10.1085/jgp.200509417 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammary gland ion transport is essential for lactation and is regulated by prolactin and glucocorticoids. This study delineates the roles of prolactin receptors (PRLR) and long-term prolactin and dexamethasone (P-D)-mediation of [Ca(2+)](i) and Cl(-) transport in HC-11 cells. P-D (24 h) suppressed ATP-induced [Ca(2+)](i). This may be due to decreased Ca(2+) entry since P-D decreased transient receptor potential channel 3 (TRPC3) but not secretory pathway Ca(2+)-ATPase 2 (SPCA2) mRNA. ATP increased Cl(-) transport, measured by iodide (I(-)) efflux, in control and P-D-treated cells. P-D enhanced I(-) efflux response to cAMP secretagogues without altering Cl(-) channels or NKCC cotransporter expression. HC-11 cells contain only the long form of PRLR (PRLR-L). Since the short isoform, PRLR-S, is mammopoietic, we determined if transfecting PRLR-S (rs) altered PRLR-L-mediated Ca(2+) and Cl(-) transport. Untreated rs cells showed an attenuated [Ca(2+)](i) response to ATP with no further response to P-D, in contrast to vector-transfected (vtc) controls. P-D inhibited TRPC3 in rs and vtc cells but increased SPCA2 only in rs cells. As in wild-type, cAMP-stimulated Cl(-) transport, in P-D-treated vtc and rs cells. In summary, 24 h P-D acts via PRLR-L to attenuate ATP-induced [Ca(2+)](i) and increase cAMP-activated Cl(-) transport. PRLR-S fine-tunes these responses underscoring its mammopoietic action.
    07/2012; 2012:192142. DOI:10.1155/2012/192142