Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells.

Department of Anatomy, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA.
Stem Cells (Impact Factor: 7.13). 05/2005; 23(6):781-90. DOI: 10.1634/stemcells.2004-0365
Source: PubMed

ABSTRACT How dopamine (DA) neuronal subtypes are specified remains unknown. In this study we show a robust generation of functional DA neurons from human embryonic stem cells (hESCs) through a specific sequence of application of fibroblast growth factor 8 (FGF8) and sonic hedgehog (SHH). Treatment of hESC-derived Sox1+ neuroepithelial cells with FGF8 and SHH resulted in production of tyrosine hydroxylase (TH)-positive neurons that were mostly bipolar cells, coexpression with gamma-aminobutyric acid, and lack of midbrain marker engrailed 1 (En1) expression. However, FGF8 treatment of precursor cells before Sox1 expression led to the generation of a similar proportion of TH+ neurons characteristic of midbrain projection DA neurons with large cell bodies and complex processes and coexpression of En1. This suggests that one mechanism of generating neuronal subtypes is temporal availability of morphogens to a specific group of precursors. The in vitro-generated DA neurons were electrophysiologically active and released DA in an activity-dependent manner. They may thus provide a renewable source of functional human DA neurons for drug screening and development of sustainable therapeutics for disorders affecting the DA system.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a mixture of neurons from various regions of the CNS. In this study, we determined that endogenous WNT signaling is a primary contributor to the heterogeneity observed in NPC cultures and neuronal differentiation. Furthermore, exogenous manipulation of WNT signaling during neural differentiation, through either activation or inhibition, reduces this heterogeneity in NPC cultures, thereby promoting the formation of regionally homogeneous NPC and neuronal cultures. The ability to manipulate WNT signaling to generate regionally specific NPCs and neurons will be useful for studying human neural development and will greatly enhance the translational potential of hPSCs for neural-related therapies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Stem cell reports. 11/2014;
  • Frontiers in Bioscience 01/2012; 17(1):65. · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The upregulation of dopaminergic neuronal differentiation is necessary for stem cell therapy in Parkinson’s disease (PD). In this study, neuronal differentiation efficiency increased by more than 2 times in P19 embryonic stem cells (ESCs) induced by N-acetylcysteine (NAC) and retinoic acid (RA) as compared to RA alone, with suppressed glial differentiation. The majority of NAC-treated stem cells grafted into brains of PD mice differentiated into dopaminergic neurons and persisted well for 6 weeks. Parkinsonism was also greatly improved after grafting NAC-treated cells in comparison to cells treated with only RA. Our results strongly suggest that NAC treatment may be an effective strategy for generating stem cells fated to become dopaminergic neurons for PD clinical therapy.
    Molecular Biology 07/2013; 47(4):538-543. · 0.74 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014