Article

Age-related alterations in white matter microstructure measured by diffusion tensor imaging.

MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129-2060, USA.
Neurobiology of Aging (Impact Factor: 4.85). 08/2005; 26(8):1215-27. DOI: 10.1016/j.neurobiolaging.2004.09.017
Source: PubMed

ABSTRACT Cerebral white matter (WM) undergoes various degenerative changes with normal aging, including decreases in myelin density and alterations in myelin structure. We acquired whole-head, high-resolution diffusion tensor images (DTI) in 38 participants across the adult age span. Maps of fractional anisotropy (FA), a measure of WM microstructure, were calculated for each participant to determine whether particular fiber systems of the brain are preferentially vulnerable to WM degeneration. Regional FA measures were estimated from nine regions of interest in each hemisphere and from the genu and splenium of the corpus callosum (CC). The results showed significant age-related decline in FA in frontal WM, the posterior limb of the internal capsule (PLIC), and the genu of the CC. In contrast, temporal and posterior WM was relatively preserved. These findings suggest that WM alterations are variable throughout the brain and that particular fiber populations within prefrontal region and PLIC are most vulnerable to age-related degeneration.

Download full-text

Full-text

Available from: Anders M Dale, Jul 04, 2015
0 Followers
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: These authors have contributed equally to this work. Executive function declines with age, but engaging in aerobic exercise may attenuate decline. One mechanism by which aerobic exercise may preserve executive function is through the up-regulation of brain-derived neurotropic factor (BDNF), which also declines with age. The present study examined BDNF as a mediator of the effects of a 1-year walking intervention on executive function in 90 older adults (mean age = 66.82). Participants were randomized to a stretching and toning control group or a moderate intensity walking intervention group. BDNF serum levels and performance on a task-switching paradigm were collected at baseline and follow-up. We found that age moderated the effect of intervention group on changes in BDNF levels, with those in the highest age quartile showing the greatest increase in BDNF after 1-year of moderate intensity walking exercise (p = 0.036). The mediation analyses revealed that BDNF mediated the effect of the intervention on task-switch accuracy, but did so as a function of age, such that exercise-induced changes in BDNF mediated the effect of exercise on task-switch performance only for individuals over the age of 71. These results demonstrate that both age and BDNF serum levels are important factors to consider when investigating the mechanisms by which exercise interventions influence cognitive outcomes, particularly in elderly populations.
    Frontiers in Human Neuroscience 12/2014; 8. DOI:10.3389/fnhum.2014.00985 · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to a higher capability in resolving white matter fiber crossings, Spherical Deconvolution (SD) methods have become very popular in brain fiber-tracking applications. However, while some of these estimation algorithms assume a central Gaussian distribution for the MRI noise, its real distribution is known to be non-Gaussian and to depend on many factors such as the number of coils and the methodology used to combine multichannel signals. Indeed, the two prevailing methods for multichannel signal combination lead to noise patterns better described by Rician and noncentral Chi distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique intended to deal with realistic MRI noise. The algorithm relies on a maximum a posteriori formulation based on Rician and noncentral Chi likelihood models and includes a total variation (TV) spatial regularization term. By means of a synthetic phantom contaminated with noise mimicking patterns generated by data processing in multichannel scanners, the performance of RUMBA-SD is compared to that of other well-established SD methods (i.e., CSD and dRL-SD). The inclusion of proper likelihood models and TV regularization in RUMBA-SD leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and an increased robustness to noise. Finally, the proposed method is also validated in human brain data, producing the most stable fiber reconstructions in front of differing noise types and diffusion schemes based on a small number of gradient directions.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is associated with cognitive decline, diminished brain function, regional brain atrophy, and disrupted structural and functional brain connectivity. Understanding brain networks in aging is essential, as brain function depends on large-scale distributed networks. Little is known of structural covariance networks to study inter-regional gray matter anatomical associations in aging. Here, we investigate anatomical brain networks based on structural covariance of gray matter volume among 370 middle-aged to older adults of 45–85 years. For each of 370 subjects, we acquired a T1-weighted anatomical MRI scan. After segmentation of structural MRI scans, nine anatomical networks were defined based on structural covariance of gray matter volume among subjects. We analyzed associations between age and gray matter volume in anatomical networks using linear regression analyses. Age was negatively associated with gray matter volume in four anatomical networks (P < 0.001, corrected): a subcortical network, sensorimotor network, posterior cingulate network, and an anterior cingulate network. Age was not significantly associated with gray matter volume in five networks: temporal network, auditory network, and three cerebellar networks. These results were independent of gender and white matter hyperintensities. Gray matter volume decreases with age in networks containing subcortical structures, sensorimotor structures, posterior, and anterior cingulate cortices. Gray matter volume in temporal, auditory, and cerebellar networks remains relatively unaffected with advancing age.
    Aging cell 09/2014; DOI:10.1111/acel.12271 · 5.94 Impact Factor