Nerve growth factor restores the expression of vasopressin and vasoactive intestinal polypeptide in the suprachiasmatic nucleus of aged rats

Department of Anatomy, Porto Medical School, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal.
Brain Research (Impact Factor: 2.83). 07/2005; 1048(1-2):123-30. DOI: 10.1016/j.brainres.2005.04.066
Source: PubMed

ABSTRACT Aging leads to a decrease in the number of neurons expressing vasopressin (VP) and vasoactive intestinal polypeptide (VIP) in the suprachiasmatic nucleus (SCN) of the rat. Similar results were observed following prolonged alcohol consumption and withdrawal. In the latter circumstances, the administration of nerve growth factor (NGF) restored the synthesis and expression of those neuropeptides despite the absence of TrkA receptors in SCN neurons. Thus, we decided to test whether the administration of NGF would improve the expression of neuropeptides in the SCN of aged rats. For this purpose, NGF was delivered intraventricularly to aged rats over a period of 14 days. The somatic volume and the total number of VP- and VIP-immunostained SCN neurons were estimated by applying stereological methods. No age-related variations were found regarding the volume of the neuronal cell bodies. Yet, a striking reduction in the number of VP- and VIP-immunoreactive neurons was detected in aged animals and found to be completely retrieved by NGF. This finding shows that exogenous NGF administered to aged rats restores the neurochemical phenotype of the SCN. This might occur either through direct signaling of SCN neurons via p75NTR or through enhancement of the cholinergic input to the SCN.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuropeptide Y (NPY)- and acetylcholine-containing interneurons of the nucleus accumbens (NAc) seem to play a major role in the rewarding effects of alcohol. This study investigated the relationship between chronic alcohol consumption and subsequent withdrawal and the expression of NPY and acetylcholine in the NAc, and the possible involvement of nerve growth factor (NGF) in mediating the effects of ethanol. Rats ingesting an aqueous ethanol solution over 6 months and rats subsequently deprived from ethanol during 2 months were used to estimate the total number and the somatic volume of NPY and cholinergic interneurons, and the numerical density of cholinergic varicosities in the NAc. The tissue content of choline acetyltransferase (ChAT) and catecholamines were also determined. The number of NPY interneurons increased during alcohol ingestion and returned to control values after withdrawal. Conversely, the number and the size of cholinergic interneurons, and the amount of ChAT were unchanged in ethanol-treated and withdrawn rats, but the density of cholinergic varicosities was reduced by 50% during alcohol consumption and by 64% after withdrawal. The concentrations of dopamine and norepinephrine were unchanged both during alcohol consumption and after withdrawal. The administration of NGF to withdrawn rats significantly increased the number of NPY-immunoreactive neurons, the size of cholinergic neurons and the density of cholinergic varicosities. Present data show that chronic alcohol consumption leads to long-lasting neuroadaptive changes of the cholinergic innervation of the NAc and suggest that the cholinergic system is a potential target for the development of therapeutic strategies in alcoholism and abstinence.
    Neurotoxicology and Teratology 07/2014; DOI:10.1016/ · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nerve growth factor (NGF) and other neurotrophins, and the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) are largely present in human tissue and can exert modulatory activities on nervous, endocrine and immune system functions. NGF, VIP and PACAP receptors are expressed systemically in organisms, and thus these mediators exhibit pleiotropic natures. The human immunodeficiency virus type 1 (HIV-1), the causal agent of the acquired immunodeficiency syndrome (AIDS), infects immune cells, and its replication is modulated by a number of endogenous factors that interact with HIV-1-infected cells. NGF, VIP and PACAP can also affect HIV-1 virus particle production upon binding to their receptors on the membranes of infected cells, which triggers cell signaling pathways that modify the HIV-1 replicative cycle. These molecules exert opposite effects on HIV-1 replication, as NGF and other neurotrophins enhance and VIP and PACAP reduce viral production in HIV-1-infected human primary macrophages. The understanding of AIDS pathogenesis should consider the mechanisms by which the replication of HIV-1, a pathogen that causes chronic morbidity, is influenced by neurotrophins, VIP and PACAP, i.e. molecules that exert a broad spectrum of physiological activities on the neuroimmunoendocrine axis. In this review, we will present the main effects of these two groups of mediators on the HIV-1 replicative cycle, as well as the mechanisms that underlie their abilities to modulate HIV-1 production in infected immune cells, and discuss the possible repercussion of the cross talk between NGF and both neuropeptides on the pathogenesis of HIV-1 infection. © 2014 S. Karger AG, Basel.
    NeuroImmunoModulation 03/2014; 21(5):268-282. DOI:10.1159/000357434 · 1.84 Impact Factor