Nonadditivity of polymeric and charged surface interactions: consequences for doped lamellar phases.

School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland.
Langmuir (Impact Factor: 4.38). 07/2005; 21(12):5627-38. DOI: 10.1021/la0501738
Source: PubMed

ABSTRACT We explore theoretically the modifications to the interactions between charged surfaces across an ionic solution caused by the presence of dielectric polymers. Although the chains are neutral, the polymer physics and the electrostatics are coupled; the intrasurface electric fields polarize any low-permittivity species (e.g., polymer) dissolved in a high-permittivity solvent (e.g., water). This coupling enhances the polymer depletion from the surfaces and increases the screening of electrostatic interactions with respect to a model which treats polymeric and electrostatic effects as independent. As a result, the range of the ionic contribution to the osmotic interaction between surfaces is decreased while that of the polymeric contribution is increased. These changes modify the total interaction in a nonadditive manner. Building on the results for parallel surfaces, we investigate the effect of this coupling on the phase behavior of polymer-doped smectics.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The structural and thermodynamical properties of weak polyelectrolytes end-tethered to surfaces of arbitrary geometry are studied using a molecular theory. The theory is based on writing down the free energy functional of the system including all the basic interactions and the explicit acid–base equilibrium for the chargeable groups of the polymer. The theory explicitly includes the size, shape, conformations, and charge distribution of all the molecular species. The electrostatic interactions include a density-dependent dielectric function, modeled with the Maxwell–Garnett mixing formula, to account for the composition-dependent permittivity. The minimization of the free energy leads to the distribution of all molecular species and their dependence on bulk pH and salt concentration. We apply the theory to polymer chains end-tethered to planar, cylindrical, and spherical surfaces. The radius of the curved surfaces is small to enhance the curvature effect. We find that when the grafting surfaces are uncharged, the approximation of a constant dielectric function works very well for both structural and thermodynamic properties. The structure of weak polyelectrolytes tethered on cylindrical and spherical surfaces is different from that of polymers tethered on planar surfaces due to the available volume as a function of the distance from the surface. Specifically, the degree of dissociation increases with increasing curvature of the surface. This is a manifestation of the coupling between the local density of protons, counterions, and polymer segments. The results can be interpreted in terms of the local Le Chatelier principle for the acid–base equilibrium, with proper account of the three local contributions: counterions, protons, and chargeable groups. We find that one can achieve local changes of pH between one to two units within 1–2 nm. The thickness of the tethered layers as a function of bulk pH shows a large increase when the pH is equal to the bulk pK. However, the variation with salt concentration is different for the different geometries. The largest swelling is found for cylindrical surfaces. The predictions from scaling theories of a maximum in the thickness of the film as a function of salt concentration is found for planar films, but not for curved surfaces. Finally, the interactions between cylinders with tethered polyelectrolytes is very different from the equivalent planar surfaces. These results are important for the interpretation of force measurements with nanoscale AFM tips. The implications of the results for the rational design of responsive tethered polymer layers is discussed together with the limitations of the theoretical approach. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2638–2662, 2006
    Journal of Polymer Science Part B Polymer Physics 09/2006; 44(18):2638 - 2662. · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We develop a semi-quantitative analytical theory to describe adhesion between two identical planar charged surfaces embedded in a polymer-containing electrolyte solution. Polymer chains are uncharged and differ from the solvent by their lower dielectric permittivity. The solution mimics physiological fluids: It contains 0.1 M of monovalent ions and a small number of divalent cations that form tight bonds with the headgroups of charged lipids. The components have heterogeneous spatial distributions. The model was derived self-consistently by combining: (a) a Poisson-Boltzmann like equation for the charge densities, (b) a continuum mean-field theory for the polymer profile, (c) a solvation energy forcing the ions toward the polymer-poor regions, and (d) surface interactions of polymers and electrolytes. We validated the theory via extensive coarse-grained Molecular Dynamics (MD) simulations. The results confirm our analytical model and reveal interesting details not detected by the theory. At high surface charges, polymer chains are mainly excluded from the gap region, while the concentration of ions increases. The model shows a strong coupling between osmotic forces, surface potential and salting-out effects of the slightly polar polymer chains. It highlights some of the key differences in the behaviour of monomeric and polymeric mixed solvents and their responses to Coulomb interactions. Our main findings are: (a) the onset of long-ranged ion-induced polymer depletion force that increases with surface charge density and (b) a polymer-modified repulsive Coulomb force that increases with surface charge density. Overall, the system exhibits homeostatic behaviour, resulting in robustness against variations in the amount of charges. Applications and extensions of the model are briefly discussed.
    The Journal of Chemical Physics 02/2012; 136(5):055101. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads to systematic, but in general small, corrections to earlier theoretical predictions describing the behavior of weak polyelectrolyte layers. However, polyelectrolyte uncharging results in a decrease in the concentration of counterions and inclusion of the Born Energy can result in a substantial decrease of the counterion concentration. The effect of considering the Born energy contribution is explored for end-grafted weak polyelectrolyte layers by calculating experimental observables which are known to depend on the presence of charges within the polyelectrolyte layer: inclusion of the Born energy contribution leads to a decrease in the capacitance of polyelectrolyte-modified electrodes, a decrease of conductivity of polyelectrolyte-modified nanopores and an increase in the repulsion exerted by a planar polyelectrolyte layer confined by an opposing wall.
    The Journal of Chemical Physics 01/2014; 140(2):024910. · 3.12 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014