Changes in gravitational force affect gene expression in developing organ systems at different developmental times.

Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
BMC Developmental Biology (Impact Factor: 2.73). 02/2005; 5:10. DOI: 10.1186/1471-213X-5-10
Source: PubMed

ABSTRACT Little is known about the affect of microgravity on gene expression, particularly in vivo during embryonic development. Using transgenic zebrafish that express the gfp gene under the influence of a beta-actin promoter, we examined the affect of simulated-microgravity on GFP expression in the heart, notochord, eye, somites, and rohon beard neurons. We exposed transgenic zebrafish to simulated-microgravity for different durations at a variety of developmental times in an attempt to determine periods of susceptibility for the different developing organ systems.
The developing heart had a period of maximum susceptibility between 32 and 56 hours after fertilization when there was an approximately 30% increase in gene expression. The notochord, eye, somites, and rohon beard neurons all showed periods of susceptibility occurring between 24 and 72 hours after fertilization. In addition, the notochord showed a second period of susceptibility between 8 and 32 hours after fertilization. Interestingly, all organs appeared to be recovering by 80 hours after fertilization despite continued exposure to simulated-microgravity.
These results support the idea that exposure to microgravity can cause changes in gene expression in a variety of developing organ systems in live embryos and that there are periods of maximum susceptibility to the effects.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gas-filled swimbladder of teleost fishes provides hydrodynamic lift which counteracts the high density of other body tissues, and thereby allows the fish to achieve neutral buoyancy with minimal energy expenditure. In this study, we examined whether the absence of a constant direction gravitational vector affects the ontogeny of the swimbladder and buoyancy control in zebrafish (Danio rerio). We exposed fertilized eggs to simulated microgravity (SMG) in a closed rotating wall vessel with control eggs placed in a similar but nonrotating container. All eggs hatched in both groups. At 96 hr of postfertilization (hpf), all larvae were removed from the experimental and control vessels. At this point, 62% of the control larvae, but only 14% of SMG-exposed larvae, were observed to have inflated their swimbladder. In addition, the mean volume of the inflated swimbladders was significantly greater in the control larvae compared with larvae raised in SMG. After transfer to open stationary observation tanks, larvae with uninflated swimbladders in both groups swam to the surface to complete inflation, but this process was significantly delayed in larvae exposed to SMG. Initial differences in swimbladder inflation and volume between groups disappeared by 144 hpf. Furthermore, there were no apparent changes in patterns of development and maturation of swimbladder musculature, vasculature, or innervation resulting from SMG exposure at later stages of ontogeny. These data indicate that, despite a transient delay in swimbladder inflation in zebrafish larvae exposed to SMG, subsequent swimbladder development in these animals proceeded similarly to that in normal larvae.
    Journal of Experimental Zoology Part A Ecological Genetics and Physiology 03/2011; 315(5):302-13. · 1.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is becoming increasingly important to address the long-term effects of exposure to simulated microgravity as the potential for space tourism and life in space become prominent topics amongst the World's governments. There are several studies examining the effects of exposure to simulated microgravity on various developmental systems and in various organisms; however, few examine the effects beyond the juvenile stages. In this study, we expose zebrafish embryos to simulated microgravity starting at key stages associated with cranial neural crest cell migration. We then analyzed the skeletons of adult fish. Gross observations and morphometric analyses show that exposure to simulated microgravity results in stunted growth, reduced ossification and severe distortion of some skeletal elements. Additionally, we investigated the effects on the juvenile skull and body pigmentation. This study determines for the first time the long-term effects of embryonic exposure to simulated microgravity on the developing skull and highlights the importance of studies investigating the effects of altered gravitational forces.
    PLoS ONE 01/2014; 9(2):e89296. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Constantly exposed to various forms of mechanical forces inherent in their physical environment (such as gravity, stress induced by fluid flow or cell–cell interactions, etc), cellular organisms sense such forces and convert them into biochemical signals through the processes of mechanosensing and mechanotransduction that eventually lead to biological changes. The effect of external forces on the internal structures and activities in a cellular organism may manifest in changes its physical properties, such as impedance. Studying variation in the impedance of a cellular organism induced by the application of an external mechanical force represents a meaningful endeavor (from a biosystems perspective) in exploring the complex mechanosensing and mechanotransduction mechanisms that govern the behavior of a cellular organism under the influence of external mechanical stimuli. In this paper we describe the development of an explicit force-feedback control system for exerting an indentation force on a cellular organism while simultaneously measuring its impedance. To demonstrate the effectiveness of this force-control system, we have conducted experiments using zebrafish embryos as a test model of a cellular organism. We report experimental results demonstrating that the application of a properly controlled external force leads to a significant change in the impedance of a zebrafish embryo. These results offer support for a plausible explanation that activities of pore canals in the chorion are responsible for the observed change in impedance.
    Journal of Micromechanics and Microengineering 12/2009; 20(2):025003. · 1.79 Impact Factor


Available from